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Mathematics education is incontestably one of the most
representative examples of the subject matter orienta-
tion in instructional and developmental psychology. As
shown by Kilpatrick (1992; see also Ginsburg, Klein, &
Starkey, 1998), mathematics education and psychology
have been intertwined throughout the past century, but
for a large part of that era the approaches from both
sides were complementary rather than symbiotic. On the
one hand, psychologists used mathematics as a domain
for studying and testing theoretical issues of cognition
and learning; on the other hand, mathematics educatjon-
alists often borrowed and selectively used concepts and
techniques from psychology. Sometimes the mutual
attitude was critical. For instance, Freudenthal (1991)
criticized psychological research for disregarding the
specific nature of mathematics as a domain and of
mathematics teaching; others, like Davis (1989) and
Wheeler (1989), reproached psychologists for taking
mathematics education as a given and uncontroversial,
without questioning its current goals and practices.
However, especially since the 1970s, an increasingly
symbiotic and mutually fertilizing relationship between
both groups has emerged, facilitated by the growing im-
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pact of the cognitive movement in psychology and by
the creation of interactive forums such as the Interna-
tional Group for the Psychology of Mathematics Educa-
tion founded in 1976. Today, the domain of mathematics
learning and instruction has become a fully fledged and
interdisciplinary field of research and study, aiming at a
better understanding of the processes underlying the ac-
quisition and development of mathematical knowledge,
skills, beliefs, and attitudes, as well as at the design—
based on that better understanding — of powerful mathe-
matics teaching-learning environments.

A parallel trend is the rapprochement in past decades
between developmental and cognitive psychology. For a
long time in the history of psychology, both subdisci-
plines adhered to different, even conflicting paradigms.
Whereas developmentalists considered development as
the necessary prerequisite, and sometimes even the final
goal of education, learning and instructional psycholo-
gists believed that cognitive development in general is
not the prerequisite but the result of education (De
Corte & Weinert, 1996). In contrast to these extreme
positions, there has developed, especially since the last
2 decades of the preceding century, a strong movement
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toward a synthesis of the concepts of development,
learning, instruction, and the interactive mind. As ar-
gued by De Corte and Weinert:

First of all, there is convincing theoretical and empirical
evidence that not only the relationship between develop-
ment and learning but also the relationship between
instruction and learning is very complicated. Matura-
tional precursors, implicit learning, and self-organizing
processes that spontaneously integrate new information
with already available knowledge all mean that cognitive
development always entails more than the sum of explicit
learning processes. In addition more must be learned than
can be taught. These restrictions on the importance of ex-
plicit learning do not mean that school learning and delib-
erate practice are unimportant for cognitive development.
Quite the opposite: to a considerable degree cognitive de-
velopment consists in the acquisition of expertise in a va-
riety of content domains. (p. xxvii)

As a result of these trends, the boundaries between
developmental and instructional psychology, but also be-
tween those subdisciplines of psychology and research
in mathematics education, have become increasingly
blurred. Consequently, in this chapter, we do not at-
tempt to make clear distinctions between or to classify
investigations in those different domains.

Taking into account space restrictions, but especially
the vast amount of research on mathematics learning
and teaching that is now available, a comprehensive and
all-inclusive coverage of the literature is beyond the
scope of this chapter. Whereas school mathematics in-
volves arithmetic, algebra, measurement, and geometry,
as well as data handling and probability, we focus on
arithmetic only, a focus that reflects the preponderance
of current psychological and educational research on
mathematics education, as well as our own research in-
terests. In our discussion of learning and teaching arith-
metic, we give special emphasis to whole number
arithmetic and word problem solving, topics that have
been stressed in reform documents issued over the past
decade (e.g., National Council of Teachers of Mathe-
matics [NCTM], 2000) because of their importance for
the acquisition of basic competence in mathematics.
Our review is also selective with regard to age range, fo-
cusing on primary school children, although some atten-
tion will be paid to lower secondary school students.

Finally, we have taken into account the excellent re-
view on the development of children’s mathematical

thinking by Ginsburg, Klein. et al. (1998) in the previous
edition of the Handbook of Child Psychology. For
instance, we do not discuss the history of the field be-
cause their chapter offers a brief but very informative
overview. For complementary information on issues and
topics that are not reviewed here, we refer readers espe-
cially to the following sources: The Development of
Mathematical Skills, edited by Donlan (1998): the report
published by the National Research Council (NRC;
2001a), Adding It Up: Helping Children Learn Mathe-
matics, edited by Kilpatrick. Swafford, and Findell; The
Development of Arithmetic Concepts and Skills: Con-
structing Adaptive Expertise, edited by Baroody and
Dowker (2003); Second International Handbook of Math-
ematics Education, edited by Bishop, Clements, Keitel,
Kilpatrick, and Leung (2003); and the forthcoming Sec-
ond Handbook of Research on Mathematics Teaching and
Learning, edited by Lester (in press). Although our ac-
count of the domain of mathematical learning and think-
ing is selective in terms of mathematical content and age
range, we have aimed at international representativeness
of the work discussed, albeit the focus still is mostly on
numerical thinking in Western societies.

As a framework for reviewing the selected literature
on the development of mathematical thinking and
learning, and for the presentation and discussion of
research-based instructional interventions, we use a
model for the design of powerful environments for
learning and teaching mathematics that is structured
according to four interrelated components (De Corte,
Verschaffel, & Masui, 2004):

1. Competence: This part of the framework analyzes
and describes the components of mathematical com-
petence or proficiency; it answers the question:
What has 10 be learned to acquire mathematical
competence?

2. Learning: This component focuses on the character-
istics of productive mathematics learning and devel-
opmental processes; it addresses the question: What
kind of learning/developmental processes should be
induced in students to facilitate their acquisition of
competence?

3. Intervention: This part of the framework elaborates
principles and guidelines for the design of powerful
environments for mathematics learning and instruc-
tion; it should answer the question: What are appro-
priate instructional methods and environments to



¢licit and maintain in students the required learning
and developmental processes?

4. Assessment: This component of the model refers to
torms and methods of assessment for monitoring and
mmproving mathematics learning and teaching; the
yuestion here is: Which types of instrument are nec-
cesary to assess students’ mastery of components of
mathematical competence and, thus, their progress

toward proficiency?

o systematic discussion of the research literature, it is
usctul to distinguish among those four components of the
{‘ompetence, Learning, Intervention, Assessment (CLIA)
maodel. In the reality of curriculum development, design-
iy learning environments, and classroom practices, the
components of the framework are narrowly intertwined.
For instance, stressing conceptual understanding rather
than the acquisition of routine procedures as a compo-
nent of competence has strong implications for the kind
of lcarning activities in which students should get in-
volved, as well as for the instructional interventions to
iduce in them those activities. Obviously, assessing con-
ceptual understanding in mathematics requires different
yuestions and tasks than checking to see if students can
perform routine procedures. These interactive relation-
ships among the CLIA components will become more ap-
parent throughout this chapter.

COMPONENTS OF
MATHEMATICAL COMPETENCE

Taking into account the literature of the past 15 to 20
vears (see, e.g.. Baroody & Dowker, 2003; De Corte,
Greer, & Verschaffel, 1996; NCTM, 1989, 2000; NRC,
2001a; Schoenfeld, 1985, 1992), becoming competent in
mathematics can be conceived of as acquiring a mathe-
matical disposition:

Learning mathematics extends beyond learning concepts,
procedures, and their applications. It also includes devel-
oping a disposition toward mathematics and seeing math-
cmatics as a powerful way for looking at situations.
Disposition refers not simply to attitudes but to a ten-
deney to think and to act in positive ways. Students’ math-
cmatical dispositions are manifested in the way they
approach tasks —whether with confidence, willingness to
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explore alternatives, perseverance. and interest—and in
their tendency to reflect on their own thinking. (NCTM.
1989, p. 230)

Building up and mastering such a disposition requires
the acquisition of five categories of cognitive, affective.
and conative components:

1. A well-organized and flexibly accessible domain-
specific knowledge base involving the facts, symbols,
algorithms, concepts, and rules that constitute the
contents of mathematics as a subject matter field.

2. Heuristics methods, that is. search strategies for
problem solving that do not guarantee but signifi-
cantly increase the probability of finding the correct
solution because they induce a systematic approach to
the task. Examples of heuristics are decomposing a
problem into subgoals and making a graphic repre-
sentation of a problem.

3. Metaknowledge, which involves knowledge about
one’s cognitive functioning (metacognitive knowl-
edge, e.g., believing that one’s cognitive potential
can be developed and improved through learning and
effort) and knowledge about one’s motivation and
emotions that can be used to deliberately improve vo-
litional efficiency (e.g., becoming aware of one’s fear
of failure when confronted with a complex mathe-
matical task or problem).

4. Self-regulatory skills, which embrace skills relating
to the self-regulation of one's cognitive processes
(metacognitive skills or cognitive self-regulation:
e.g.. planning and monitoring one’s problem-solving
processes) and skills for regulating one’s volitional
processes/activities (metavolitional skills or voli-
tional self-regulation; e.g., keeping up one’s attention
and motivation to solve a given problem).

1

Positive beliefs about oneself in relation to mathe-
matical learning and problem solving (self-efficacy
beliefs), about the social context in which mathemat-
ical activities take place, and about mathematics and
mathematical learning and problem solving.

We know from past research that knowledge and
skills that students have learned are often neither acces-
sible nor usable when necessary to solve a problem at
hand (Cognition and Technology Group at Vanderbilt,
1997). Building a disposition toward skilled learning
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and thinking should help to overcome this phenomenon,
which Whitehead already in 1929 labeled “inert knowl-
edge.” To overcome this inertia, it is necessary that
these different kinds of knowledge. skills, and beliefs
are acquired and mastered in an inregrated way, result-
ing in the development of the intended disposition. Ac-
cording to Perkins (1995). two crucial aspects of such a
disposition are sensitivity to situations in which it is rel-
evant and appropriate to use acquired knowledge and
skills and the inclination to do so. Perkins argues that
these aspects are both determined by the beliefs a per-
son holds. For instance, one’s beliefs about what counts
as a mathematical context and what one finds interesting
or important have a strong impact on the situations one
is sensitive to and whether or not one engages in them.

This view of mathematical competence is quite con-
sonant with the conception of mathematical profi-
ciency as elaborated in the report of the NRC (2001a)
which defines proficiency in terms of five interwoven
strands: conceptual understanding, computational flu-
ency, strategic competence. adaptive reasoning, and
productive disposition. Conceptual understanding and
procedural fluency are the two most important aspects
of a well-organized and flexibly accessible domain-
specific knowledge base. Conceptual understanding
refers to “comprehension of mathematical concepts,
operations, and relations” and procedural fluency to
“skill in carrying out procedures flexibly, accurately,
efficiently, and appropriately” (p. 5). Strategic compe-
tence is defined as “ability to formulate, represent, and
solve mathematical problems” (p. 5); this obviously
implies heuristic strategies but also aspects of cogni-
tive self-regulation. Adaptive reasoning, viewed as the
“capacity for logical thought, reflection, explanation,
and justification” (p. 3), involves especially skills in
cognitive self-regulation (see also p. 118). Finally, a
productive disposition is conceived of as a “habitual
inclination to see mathematics as sensible, usetul, and
worthwhile, coupled with a belief in diligence and
one’s efficacy”™ (p. 5); this strand of proficiency con-
verges with the positive beliefs mentioned earlier, but
it also relates to the sensitivity and inclination aspects
of a mathematical disposition.

The conceptualization of mathematical proficiency
in the report of the NRC (2001a) is thus well in line with
our elaboration of the competence component of the
CLIA framework. Both perspectives embody also what
Hatano (1982, 1988; see also Baroody, 2003) has called

adaptive expertise, that is, the ability to apply meaning-
fully acquired knowledge and skills flexibly and cre-
atively in a large variety of situations, familiar as well
as unfamiliar. Nevertheless. some aspects of our analy-
sis of competence are not, or at least not explicitly, in-
cluded or articulated in the definition of proficiency in
the NRC report, namely, metaknowledge and especially
volitional self-regulation skills. which are essential to
stay concentrated on a task and to sustain and persevere
in achieving it (Corno et al., 2002). A major point on
which both perspectives on mathematical competence
do strongly agree is that the different components in-
volved are interwoven and, therefore, need to be ac-
quired integratively. In fact, the interdependency of the
five strands outlined earlier is the leitmotif of the re-
port: “Learning is not an all-or-none phenomenon, and as
it proceeds, each strand of mathematical proficiency
should be developed in synchrony with the others. That
development takes time” (NRC, 2001a, p. 133).

This standpoint has very important implications from
a developmental perspective. Indeed, it means that from
the very beginning of mathematics education, attention
has to be paid to the parallel and integrated acquisition
in children of the different components of competence.
In this respect, we endorse the following point of view
of the NRC (2001a, p. 133) report: “One of the most
challenging tasks faced by teachers in prekindergarten
to grade 8 is to see that children are making progress
along every strand and not just one or two.”

In the next part of this section, we focus on several
components of competence by reviewing a selection of
the recent literature that has contributed to unravel their
development in children. Thereby we will take into ac-
count the interdependency of the different strands of
proficiency: number sense, single-digit computation,
and multidigit arithmetic, which constitute major as-
pects of the domain-specific knowledge involved in the
primary school mathematics curriculum; word problem
solving. in which domain-specific knowledge but also
heuristic strategies and self-regulation skills and even
beliefs all interactively play an important role; and
mathematics-related beliefs, a topic that only recently
has attracted the interest of researchers. Most of these
topics received relatively little attention in the chapter
on the development of children’s mathematical thinking
in the previous edition of this Handbook (Ginsburg,
Klein. et al., 1998), which focused more on development
during infancy, toddlerhood, and the preschool years.



Number Sense

In the reform documents for mathematics education is-
sued in different countries over the past decades, it has
been stressed that the elementary mathematics curricu-
lum should pay substantial attention to the development
of number concepts and numeration skills (see, e.g..
Australian Education Council, 1990; Cockcroft, 1982:
NCTM, 1989). One of the most typical aspects of the re-
form documents in this respect is the emphasis they
put—already in the early grades of primary school—on
number sense (e.g., NCTM, 1989): this is not at all sur-
prising as it typifies the current view of learning mathe-
matics as a sense-making activity.

MclIntosh, Reys, and Reys (1992, p. 3) describe num-
ber sense as follows:

Number sense refers to a person’s general understanding
of number and operations. It refers to a person’s general
understanding of number and operations along with the
ability and inclination to use this understanding in flexi-
ble ways to make mathematical judgments and to develop
useful strategies for handling numbers and operations. It
reflects an inclination and an ability to use numbers and
quantitative methods as a means of communicating. pro-
cessing and interpreting information. It results in, and re-
ciprocally derives from, an expectation that numbers are
useful and that mathematics has a certain regularity.

further discussions and analyses have resulted in
listings of the essential components of number sense
tMclntosh et al., 1992; Sowder, 1992}, descriptions
of students displaying (lack of ) number sense (Reys &
Yung, 1998), and an in-depth theoretical analysis
of number sense from a psychological perspective
{Greeno, 1991a).

Probably the most comprehensive and most influen-
tral attempt to articulate a structure that clarifies, or-
panizes. and interrelates some of the generally agreed
upon components of basic number sense has been pro-
vided by MclIntosh et al. (1992). In their model, they dis-
tinguish three areas where number sense plays a key
role: number concepts, operations with number, and ap-
phications of number and operation:

1. The first component, “knowledge of and facility with
numbers,” involves subskills such as a sense of order-
liness of number (“Indicate a number on an empty
number line, given some benchmarks”). multiple rep-
resentations for numbers (%4 = 0.75), a sense of rela-
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tive and absolute magnitude of numbers (“Have you
lived more or less than 1,000 days?”), and a system of
benchmarks (recognizing that the sum of two 2-digit
numbers is less than 200).

2. The second component. called “knowledge of and fa-
cility with operations.” involves understanding the ef-
fect of operations (knowing that multiplication does
nor always make bigger), understanding mathematical
properties (e.g.. commutativity, associativity. and
distributivity, and intuitively applying these proper-
ties in inventing procedures for mental computation),
and understanding the relationship between opera-
tions (the inverse relationships between addition and
subtraction and between multiplication and division)
to solve a problem such as 11 - 9 = by means
of indirect addition. or to solve a division problem
such as 480/8 by multiplying 8 x = 480,

3. The third component, “applying knowledge and facil-
ity with numbers and operations to computational
settings,” involves subskills such as understanding
the relationship between problem contexts and the
necessary computation (e.g.. “if Skip spent $2.88 for
apples, $2.38 for bananas, and $3.76 for oranges,
could Skip pay for this fruit with $10?” can be solved
quickly and confidently by adding the three estimated
quantities rather than by exacr calculation), aware-
ness that multiple strategies exist for a given prob-
lem, inclination to utilize an efficient representation
and/or method (not solving (375 + 375 + 375 + 375 +
375)/5 by first adding the five numbers and then di-
viding the answer by 5), and inclination to review
data and results (having a natural tendency to exam-
ine one’s answer in light of the original problem).

Several researchers have documented the problems
children experience with the different aspects of
number sense. For instance, Reys and Yang (1998) in-
vestigated the relationship between computational
performance and number sense among sixth- and eight-
grade students in Taiwan. Seventeen students were in-
terviewed about their knowledge of the different aspects
of number sense from the theoretical framework men-
tioned here. Students’ overall performance on number
sense was lower than their performance on similar ques-
tions requiring written computation. There was little ev-
idence that identifiable components of number sense,
such as use of benchmarks, were naturally used by Tai-
wanese students in their decision making.
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In line with his situative view of cognition, Greeno
(1991a: see also Sowder, 1992) has suggested the fol-
lowing metaphor for developing number sense. He char-
acterized it as an environment, with the collection of
resources needed for knowing, understanding, and rea-
soning all at different places within this environment:
“Learning in the domain, in this view, is analogous to
learning to get around in an environment and to use the
resources there in conducting one’s activities produc-
tively and enjoyably™ (p. 45).

People who have developed number sense can move
around easily within this environment because of their
access to the necessary resources. Teaching becomes
the act of “indicating what resources the environment
has, where they can be found, what some of the easy
routes are, and where interesting sites are worth visit-
ing”™ (p. 48).

Given that number sense is conceptualized in such a
way, it is evident that, according to Greeno (1991a),
Reys and Yang (1998, p. 227), and many others, the de-
velopment of number sense “is not a finite entity that a
student has or does not have but rather a process that de-
velops and matures with experience and knowledge.”
This development results from a whole range of mathe-
matical activities on a day-by-day basis within each
mathematics lesson, rather than from a designated set or
subset of specially designed activities (Greeno, 1991a;
Reys & Yang, 1998).

According to many authors, estimation is closely con-
nected to number sense (or to numeracy). For instance,
Van den Heuvel-Panhuizen (2001, p. 173) starts her di-
dactical treatise of estimation as follows: “Estimation is
one of the fundamental aspects of numeracy. It is the
preeminent calculation form in which numeracy mani-
fests itself most explicitly.” Besides the fact that it is
pervasively present in the daily lives of both children
and adults, estimation is also important because it is re-
lated to and constitutive of other conceptual, proce-
dural, strategic, and attitudinal aspects of mathematical
ability (Siegler & Booth, in press; Sowder, 1992; Van
den Heuvel-Panhuizen, 2001). In her review of the liter-
ature on estimation up to the early 1990s. Sowder differ-
entiated three forms of estimation: computational
estimation (performing some mental computation on ap-
proximations of the original numbers of a required com-
putation),
length or area of a room), and numerosity estimation (es-
timating the number of items in a set, such as the num-
ber of people in a theater). In a more recent overview of

measurement estimation (estimating the

the literature, Siegler and Booth identify a fourth cate-
gory, number line estimation (translating numbers into
positions on number lines, such as a 0-100 or a 1-1,000
number line). For all these types of estimation, the older
and more recent research. which is excellently reviewed
in the works cited earlier, shows that both children and
adults use varied estimation strategies, that the variety,
efficiency, sophistication. and adaptivity of these strate-
gies increase with age and experience. and that estima-
tion is a domain wherein all aspects of a mathematical
disposition are integratively involved.

The preceding discussion clearly shows the disposi-
tional nature of number sense, involving not only as-
pects of capacity but also aspects of inclination and
sensitivity; it also illustrates that number sense remains
a vague notion and that its relationships with other as-
pects of arithmetic competence need further clarifica-
tion. As stated in NCTM’s (1989, p. 39) Curriculum and
Evaluation Standards for School Mathematics, number
sense is “an intuition about numbers that is drawn from
all varied meanings of numbers.” Nowadays, it is very
common in the mathematics education community to
agree that this intuition is important; however, it is hard
to define and even harder to operationalize in view of
the research. And recently there has been a rash of more
or less related terms, such as “numeracy” and “mathe-
matical literacy,” also with little definitional precision.
Indeed, in most cases where we have encountered it,
number sense is defined so broadly that it includes prob-
lem solving but also most, if not all, other skills that
constitute a mathematical disposition (McIntosh et al.,
1992). Although we acknowledge its power in curricular
reforms, we have some doubts about its usefulness for
scientific research unless its specific meaning is articu-
lated in a more clear and consistent way.

Single-Digit Computation

The domain of single-digit addition and subtraction is
undoubtedly one of the most frequently investigated
areas of numerical cognition and school mathematics.
Much work in the domain has been done from a cogni-
tive/rationalist, especially an information-processing
perspective. Numerous older and more recent studies
provide detailed descriptions of the progression in
children of orally stated single-digit additions (e.g.,
3+4=
all-with-materials strategy; over several types of more
advanced counting strategies (such as counting-all-

). from the earliest concrete counting-



without-materials, counting-on-from-first, and counting-
on-from-larger, and derived-fact strategies) that take ad-
vantage of certain arithmetic principles to shorten and
simplify the computation; to the final state of “known
facts” (for extensive reviews of this research, see Ba-
roody & Tiilikainen, 2003; Fuson, 1992; NRC, 2001a;
Thompson, 1999).

Similar levels for subtraction have been described,
although this developmental sequence is somewhat less
clearly defined (Thompson, 1999).

These and other studies document how, at any given
time during this development, an individual child uses
a variety of addition strategies, even within the same
session and for the same item (for an overview, see
Siegler, 1998). Even older students and adults do not
always perform at the highest developmental level of
“known fact use” but still demonstrate use of a range
of different procedures even for simple addition prob-
lems (Siegler, 1998).

The exact organization of the store of arithmetic
facts in subjects having reached the final stage of this
developmental process is a special area of research in
numerical cognition (for an overview, see Ashcraft,
1995; Dehaene, 1993). Most of this research has been
done with adults rather than with elementary school
children. Most models share the notion that in the “ex-
pert fact retriever,” arithmetic facts such as 2+3 =35
are memorized in and automatically retrieved from a
stored associative network or lexicon (Ashcraft, 1995).
Well-known “problem size effects” (i.e., the fact that
the time needed to solve single-digit addition problems
increases slightly with the size of the operands) and “tie
effects” (i.e., the fact that response time for ties such as
2 +2 remains constant or increases only moderately
with operand size) are considered in this common view
as reflecting the duration and difficulty of memory re-
trieval. According to Ashcraft (1995; Ashcraft &
Christy, 1995), both effects faithfully reflect the fre-
guency with which arithmetic facts are acquired and
practiced by individuals. However, it is quite generally
accepted that not all experts’ knowledge of single-digit
arithmetic is mentally represented in separate and inde-
pendent units. Part of their knowledge about simple ad-
dition seems to be stored in rules (e.g., N+0=N)
rather than as isolated facts (e.g., 1 +0=1,2+0=2).
A related assumption is that not all problems are repre-
sented. For instance, for each commutative pair of prob-
fems (e.g., 3+ 5 and 5 + 3), there might be only one
icpresentational unit in the network.
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It is well known that the developmental process from
counting to fact retrieval does not proceed smoothly for
all children. Single-digit arithmetic among children
with mathematical difficulties or learning problems has
also attracted a lot of research. Generally speaking, this
research shows that learning-disabled children and oth-
ers having difficulty with mathematics do not use proce-
dures that differ from the progression described here.
Rather, they are just slower than others in moving
through it (NRC, 200la; Torbeyns, Verschaffel, &
Ghesquiere, 2005). Especially the last step of arithmetic
facts mastery seems to be very difficult for them, and
for some of these children, these retrieval difficulties
appear to reflect a highly persistent, perhaps lifelong,
deficit rather than merely a temporary developmental
delay (Geary, 2003).

Several other studies have addressed the relationship
between declarative and procedural knowledge by inves-
tigating which kind of knowledge develops before the
other. As far as single-digit addition and subtraction is
concerned, this question has focused on the relationship
between children’s understanding of certain mathemati-
cal principles, especially commutativity, and their pro-
gression toward more efficient counting strategies (e.g.,
the counting-on-from-larger strategy, otherwise known
as the min strategy) based on these mathematical princi-
ples (for extensive reviews of this literature, see Baroody,
Wilkins, & Tiilikainen, 2003; Rittle-Johnson & Siegler,
1998). This research indicates that conceptual and proce-
dural knowledge are positively correlated, but also that
most children understand the commutativity concept
before they generate the procedure(s) based on it. This
latter finding seems to favor, at least for the domain
of single-digit addition, the “concepts first” above the
“skills first” view. However, whereas in previous decades
the debate about the relationship between conceptual and
procedural knowledge was dominated by proponents of
these two camps, most researchers now adhere to a more
moderate perspective. They assume, on the one hand,
that the relationship between procedural and conceptual
knowledge develops more concurrently and/or iteratively
than suggested by both opposite views and, on the other
hand, that the nature of this relationship may differ
among different mathematical (sub)domains (Baroody,
2003; Rittle-Johnson & Siegler, 1998).

Although the research concerning the development of
children’s strategies for multiplying and dividing single-
digit numbers is less extensive than for single-digit addi-
tion and subtraction, there is a growing body of studies
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in this domain, too (e.g., Anghileri, 1999, Butterworth,
Marschesini, & Girelli, 2003; LeFevre, Smith-Chant,
Hiscock, Daley, & Morris, 2003; Lemaire & Siegler,
1995; Mulligan & Mitchelmore, [997; Steffe & Cobb,
1998). As for single-digit addition and subtraction, this
research documents how, generally speaking, children
progress from concrete (material-, fingers-, or paper-
based) counting-all strategies, through additive-related
calculations (repeated adding and additive doubling).
pattern-based (e.g., multiplying by 9 as by 10 - 1), and
derived-fact strategies (e.g., deriving 7 x 8 from 7 x 7 =
49), to a phase of learned multiplication products. How-
ever. there is less consistency between the names and
the characterizations of the different categories than for
addition and subtraction. As for these two operations,
research on multiplication and division has shown that
multiplicity and flexibility of strategy use are basic fea-
tures of people doing simple number combinations, even
for older children and adults (LeFevre et al., 2003).
Here, too, research is unequivocal about the exact fea-
tures of the organization and the functioning of the mul-
tiplication facts store and, more particularly, to what
extent (part of ) experts’ knowledge about the multipli-
cation table is stored in rules (0 x N =0,1 x N =N, 10 x
N = NO, etc.) rather than as strengthened associative
links between particular mathematical expressions and
their correct answers. Based on a recent study with third
and fifth graders solving multiplication items with the
larger operand either placed first (7 x 3 = ) or
second 3 x 7= ), Butterworth et al. (2003,
p. 201) concluded:

The child learning multiplication facts may not be passive,
simply building associative connections between an ex-
pression and its answer as a result of practice. Rather, the
combinations held in memory may be reorganized in a
principled way that takes into account a growing under-
standing of the operation, including the commutativity
principle, and. perhaps, other properties of multiplication.

Baroody (1993) arrived at a similar conclusion based on
a study on the role of relational knowledge in the devel-
opment of mastering multiplication basic fact knowl-
edge, and especially of knowledge about the addition
doubles in learning multiplication combinations involv-
ing2(2x6,2x11,2x50...).

Probably the most ambitious and most influential
attempt to model this development and this variety
of strategy use in single-digit arithmetic from an

information-processing perspective is found in the
subsequent versions of the computer model of strategy
choice and strategy change in the domain of simple
addition developed by Siegler and associates. We
briefly describe the latest version of the Strategy
Choice and Discovery Simulation (SCADS; Shrager &
Siegler, 1998; see also Siegler, 2001; Torbeyns, Arnaud,
Lemaire, & Verschaffel, 2004). Central in SCADS is a
database with information about problems and strate-
gies that plays a key role in the strategy choice process.
The first type of information, information about prob-
lems, consists of problem-answer associations, that is,
associations between individual problems and potential
answers to these problems, which differ in strength. The
second type of information includes global, featural,
problem-specific, and novelty data about each strategy
available in the database. Whenever SCADS is pre-
sented with a problem, it activates the global, featural,
and problem-specific data about the speed and accuracy
of each of the available strategies. The model weights
these data in terms of the amount of information they
reflect and how recently they were generated. Weighted
efficiency and novelty data for each strategy provide the
input for stepwise regression analyses, which compute
the projected strength of the different strategies on
the problem: The strategy with the highest projected
strength has the highest probability to be chosen. In
case the initially chosen strategy does not work, another
strategy with less projected strength is chosen, and this
process continues until a strategy is chosen that meets
the model’s criteria. An important advantage of SCADS
(compared to its predecessors) is that it also discovers
new strategies and learns about them. It does so through
representing each strategy as a modular sequence of op-
erators (rather than just a unit) and by maintaining a
working memory trace of the strategy’s execution
(rather than just recording speed and accuracy data). A
metacognitive system uses the representation of the
strategies and the memory traces to formulate new
strategies based on the detection of redundant se-
quences of behavior and the identification of more effi-
cient orders of executing operators. SCADS evaluates
these proposed strategies for consistency with a “goal
sketch,” which indicates the criteria that legitimate
strategies in the domain of simple addition must meet.
If the proposed strategy violates the conceptual con-
straints specified by the goal sketch filters, it is aban-
doned. If the proposed strategy is in accord with the



conceptual constraints (approved strategies), SCADS
aclds It to its strategy repertoire. The newly discovered
+trategy thus modifies the model’s database and, conse-
quently, influences future strategy choices. According
te the developers of SCADS, its performance on single-
Jipit additions and on additions with one addend above
0 is highly consistent with the strategy choice and dis-
vovery phenomena that they observed in their studies
with young children (Shrager & Siegler: 1998; Siegler &
feakins, 1989; see also Siegler, 2001 ).

Siegler’s strategy choice model has been tested for
semple addition and also, although to a much less fine-
#ruined extent, for multiplication. Siegler and Lemaire
£1997) report a longitudinal investigation of French sec-
ond graders’ acquisition of single-digit multiplication
shills. Speed, accuracy, and strategy data were assessed
three times in the year when children learned multipli-
vition. The data showed improvements in speed and
avcuracy, which reflected four different aspects of
strategic changes that generally accompanied learning:
origin of new strategies, more frequent use of more
vilicient strategies, more efficient execution of each
strategy, and more adaptive choices among available
“trategies. According to the authors, these findings sup-
port a number of predictions of the SCADS model.

Siegler’s (2001) model is considered by many as
among the strongest proofs of the success of the
mlormation-processing paradigm, and it has influenced
and still influences a lot of research in the domain of
single-digit arithmetic. Nevertheless, this model also
hus its critics. First, although SCADS involves a large
sumber of strategies, its direct application field is rather
restricted. Future models will need to incorporate a
wider range of strategies, such as the decomposition-to-
10 strategy (e.g., 8 +7=(8+2)+(7-2)=15) or the
tie strategy (e.g., 6+7=(6+6)+1=13; Torbeyns
ctal., 2005), as well as the extension from single-digit to
multidigit addition. The further elaboration of the
wadel for other operations is also necessary. According
to some scholars (e.g.. Cowan, 2003), this may only be a
matter of time; others are more skeptical about the ease
with which the application range of computer models
the SCADS can be meaningfully broadened to include
sehited task domains (Baroody & Tiilikainen. 2003).
Mare important, however, are the criticisms of the
sinlel coming from other, more recent theoretical per-
pectives. Starting from a constructivist and social-
tarning theoretical framework and from a broader data
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set, Baroody and Tiilikainen performed a very critical
analysis of Siegler’s model of early addition perfor-
mance and its underlying assumptions. These authors
argue that the operation of SCADS is at odds with
several key phenomena about the development and flexi-
bility of children’s addition strategies. For instance, Ba-
roody and Tiilikainen collected evidence that even
children who apparently have constructed a goal sketch
sometimes used strategies that do not conform to a valid
addition strategy specified in the goal sketch whereas
SCADS never executes illegal strategies. Another im-
portant criticism of the model is that little or no atten-
tion is given to the social and instructional context in
which the development of arithmetic skills takes place.
Indeed, it seems incontrovertible to assume that the oc-
currence and the frequency, efficiency, and adaptivity
with which certain strategies are used by children will
depend heavily on the nature of instruction. And by
instruction we mean more than the frequency of an
arithmetic fact in an elementary school mathematics
textbook (Ashcraft & Christy, 1995), the number of
times a particular item has been shown, or the number
of times a child has received positive or negative feed-
back for a particular item. For instance, several re-
searchers (Hatano, 1982; Kuriyama & Yoshida, 1995)
who examined the developmental paths of addition solu-
tion methods used by Japanese children have reported
that they typically move more quickly than U.S. chil-
dren do from counting-all methods to derived-fact and
known-fact methods without passing through a clearly
identifiable stage of more efficient counting strategies.
Interestingly, many Japénese children use the number 5
as an intermediate anchor to think about numbers and to
do additions and subtractions, before starting to do
sums by means of retrieval or using 10 as an anchor in
their derived-fact strategies. According to these authors,
these developmental characteristics of Japanese children
are closely related to a number of cultural and instruc-
tional supports and practices, such as the emphasis on
using groups of five in the early arithmetic instruction
in general and in abacus instruction in particular. Simi-
larly, among classes of Flemish children. Torbeyns et al.
(2005) found an unusually frequent, efficient, and adap-
tive use of a tie strategy on sums above 10. that is. solv-
ing almost-tie sums such as 7 + 8 = by means of
T+D+1= . rather than by the decomposition-
to-10 strategy: (7 +3)+ 5 = . In those classes. a
new textbook series was used that put great emphasis on
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the deliberate and flexible use of multiple solution
strategies rather than on the mastery of the decomposi-
tion-to-10 strategy as the only acceptable approach to
sums above 10.

Commenting on Baroody and Tiilikainen's (2003) very
critical analysis of SCADS, and on the “schema-based
view” they present as a more valuable alternative, Bisanz
(2003) remarks that. although it is quite clear how
SCADS works, this schema-based view, which speaks of a
“web of conceptual, procedural, and factual knowledge,”
is not described in equally great detail. He concludes
rightly, “When accounting for data, an unspecified model
(like Baroody’s) will always have an advantage over a rel-
atively well-specified model, because the latter is con-
strained by its details” (p. 442). But even if Baroody and
Tiilikainen’s model lacks the specificity of SCADS, it
certainly points to the complex mutual relationship be-
tween different kinds of knowledge (conceptual and pro-
cedural) in the development of single-digit arithmetic, as
well as to the crucial role of the broader sociocultural and
instructional contexts in which this development occurs.

In sum, the available research over the past decade
has convincingly documented that acquiring proficiency
with single-digit computations involves much more than
rote memorization. This domain of whole number arith-
metic demonstrates (a) how the different components of
arithmetic skill (strategies, principles, and number facts)
contribute to each other; (b) how children begin with un-
derstanding of the meaning of operations and how they
gradually develop more efficient methods; and (c) how
they choose adaptively among different strategies de-
pending on the numbers involved (NRC, 2001a). Re-
searchers have made considerable progress in describing
these phenomena, and there are now sophisticated com-
puter models that fit to some extent with the available
empirical data. But we are nevertheless still remote from
a full understanding of the development of expertise in
this subdomain (Cowan, 2003). One of the most impor-
tant tasks for further research relates to how these dif-
ferent components interact and, more precisely, exactly
when and how the development of one component pro-
motes the development of another. As argued convinc-
ingly by Siegler and others (Siegler, 2001; Torbeyns
et al., 2004), further research on this issue requires the
application of so-called microgenetic methods, which in-
volve the repeated examination of children’s factual,
conceptual, and procedural knowledge during the whole
learning process.

Another largely unresolved issue concerns the impact
of cultural and instructional factors beyond the simple
ones dealing with the amount of practice and reinforce-
ment of arithmetic responses that are implemented
in Siegler’s computer simulation model. Remarkably,
many of the available computer models seem to assume
that there is a kind of universal taxonomy and/or devel-
opmental sequence of computational strategies, which is
fundamentally independent of the nature of instruction
or the broader cultural environment. It seems indeed
plausible that some elements of this development are
strongly constrained by general factors other than the
instructional and cultural context wherein this develop-
ment occurs, such as the inherent structure of mathe-
matics and the unfolding of certain cognitive capacities
in early childhood. However, other developmental as-
pects look less constrained and much more dependent
on children’s experiences with early mathematics at
home and at school, such as the provision of cultural
supports and practices as sources to move quickly
beyond counting-based methods. or the immersion in
a classroom climate and culture that encourages and
praises flexibility.

Multidigit Arithmetic

Whereas existing theory and research offer a rather
comprehensive picture of how children learn to add and
subtract with small numbers, the literature about what
concepts and strategies should be distinguished and how
they develop over time is much more limited in the do-
main of multidigit arithmetic.

During the past decade, a number of studies from
many different countries have documented the frequent
and varied nature of children’s and adults’ use of in-
formal strategies for mental addition and subtraction
that depart from the formal written algorithms taught in
school (Beishuizen, 1999; Carpenter, Franke, Jacobs,
Fennema, & Empson, 1998; Cooper, Heirdsfield, &
Irons, 1996; Jones, Thornton, & Putt, 1994; Reys, Reys,
Nohda, & Emori, 1995; Thompson, 1999: Verschaffel,
1997). For instance, in the United States, Carpenter et al.
(1998) did a longitudinal study investigating the develop-
ment of children’s mulitidigit addition and subtraction in
relation to their understanding of multidigit concepts in
grades 1 through 3. Students were individually inter-
viewed five times on a variety of tasks involving straight-
forward, result-unknown addition and subtraction word



problems with two-digit numbers for the first three inter-
views and three-digit numbers in the last two interviews.
During the same interviews, children were individually
administered five tasks measuring their knowledge of
base-10 number concepts, together with a task wherein
they had to apply a specific invented strategy to solve an-
other problem and two unfamiliar (missing addend) prob-
fems that required some flexibility in calculation. It is
important to note that all students were in classes of
teachers who were participating in a 3-year intervention
study designed to help them understand and build on
children’s mathematical thinking in line with reform-
based principles. The emphasis of this intervention was
on how children’s intuitive mathematical ideas emerge to
form the basis for the development of more formal con-
cepts and procedures. Teachers learned about how chil-
dren solve problems using base-10 materials and about
the various invented strategies children often construct.
The researchers identified the following categories of
strategies:

* Modeling or counting by Is.
* Modeling with 10s materials.

+ Combining-units strategies (otherwise called decom-
position or split strategies), wherein the 100s, 10s, and
units of the different numbers are split off and han-
dled separately (e.g., 46 + 47 is determined by taking
40 + 40 =80and 6 + 7 = 13, answer 80 + 13 = 93).

* Sequential strategies or jump strategies, wherein the
different values of the second number are counted up
or down from the first unsplit number (e.g., 46 + 47
is determined by taking 46 + 40 = 86, 86 + 7 = 93).

+ Compensating strategies or varying strategies, wherein
the numbers are adjusted to simplify the calculation
(c.g.,46+47 =(45+45)+ 1 +2=93).

* Other invented mental calculation strategies.

+ Algorithms (correct as well as buggy ones) wherein
the answer is not found by means of mental calcula-
tion with numbers but by applying a taught algo-
rithm on digits.

The study showed that, under favorable circum-
wtances, children can invent mental calculation strategies
tor addition and subtraction problems. Also, buggy algo-
stthims occurred more frequently among children who
~tarted out working algorithmically than among children
who used invented mental strategies before or at the
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same time that they used standard algorithms. Students
who used mental calculation strategies before using
standard algorithms demonstrated better knowledge of
base-10 number concepts and were more successful in
extending their knowledge to new situations than stu-
dents who used standard algorithms before applying
mental calculation strategies. Finally, the data suggest
that there is no explicit sequence in which the three basic
categories of mental calculation strategies (sequential,
combining units, and compensating) develop for addi-
tion; the majority of students applied all three. and the
order in which they occurred was mixed. For subtrac-
tion, the sequential method was most often used, but
some compensation strategies were observed, too.

Similar findings about the development of students’
mental calculation strategies for multidigit addition and
subtraction, in close relation to the development of their
conceptual knowledge, were reported by Fuson et al.
(1997) and by Hiebert and Wearne (1996). In both stud-
ies, these findings were obtained in nonconventional.
reform-based classrooms. The latter authors followed
children from the first to the fourth grade. They as-
sessed conceptual understanding by asking children to
identify the number of 10s in a number, to represent the
value of each digit in a number with concrete materials,
and to make different concrete representations of
multidigit numbers. Procedural knowledge was assessed
through performance on two-digit addition and subtrac-
tion story problems. which could be solved either by the
standard algorithm or by an invented procedure. The
size of the numbers used in the tests differed as the chil-
dren grew older. Across assessment periods, children
who demonstrated higher levels of conceptual under-
standing obtained higher scores on the procedural mea-
sures. As a second kind of support for the close
relationship between procedural and conceptual knowl-
edge, Hiebert and Wearne found that early conceptual
understanding predicted not only concurrent but also fu-
ture procedural skill.

Several researchers have documented that children
also can invent strategies for multiplying and dividing
multidigit numbers and have described some strategies
they use. However, less progress has been made in char-
acterizing such inventions than for the domain of multi-
digit addition and subtraction. We summarize next the
main findings from an analysis by Ambrose, Baek, and
Carpenter (2003) of children’s invented multidigit mul-
tiplication and division procedures and the concepts and
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skills they depend on. We stress that these inventions
did not take place in a vacuum. but in the context of a
reform-based instructional environment that allowed
and even stimulated children to construct, elaborate,
and refine their own mental strategies rather than forc-
ing them to follow a uniform, standardized trajectory
for mental and/or written arithmetic. Very similar
analyses have been reported by Anghileri (1999) and
Thompson (1999) in the United Kingdom with children
being taught according to the principles of the National
Numeracy Strategy and by Treffers (1987) and Van Put-
ten. Van den Brom-Snijders, and Beishuizen (2005) in
the Netherlands with children being taught according to
the principles of Realistic Mathematics Education.
Ambrose et al. (2003) classified children’s mental
calculation strategies for multiplication problems into
four categories: direct modeling, complete number
strategies. partitioning number strategies, and compen-
sating strategies. A child using a direct modeling straregy
models each of the groups using concrete manipulatives
or drawings. Among these direct modeling strategies,
the most elementary ones involve the use of individual
counters to directly represent problems (identical to
those used with single-digit numbers). As children de-
velop knowledge of base-10 number concepts. they begin
to use base-10 materials rather than individual counters
to directly model and solve the problem. A second cate-
gory. complete number strategies, describes strategies
based on progressively more efficient techniques tor
adding and doubling. The most basic one is simply re-
peated addition. Others involve doubling, complex dou-
bling. and building up by other factors. A child using the
partitioning number strategy will split the multiplicand
or multiplier into two or more numbers and create multi-
ple subproblems that are easier to deal with. This proce-
dure allows children to reduce the complexity of the
problem and to use multiplication facts they already
know. Distinction is made between strategies wherein a
number is partitioned into nondecade numbers, strate-
gies wherein a number is partitioned into decade
numbers, and strategies wherein both numbers are parti-
tioned into decade numbers. Finally. a child using a com-
pensating strategy will adjust both multiplicand and
multiplier or one of them based on special characteris-
tics of the number combination to make the calculation
casier. Children then make corresponding adjustments
later if necessary. Ambrose et al. present a similar tax-
onomy for division, Many children in the study devel-
oped their mental calculation strategies for multidigit

numbers in a sequence from direct modeling to complete
number, to partitioning numbers into nondecade num-
bers. and to partitioning numbers into decade numbers.
Moreover, children’s strategies for solving multidigit
multiplication problems varied with their conceptual
knowledge of addition, units. grouping by 10, place
value, and properties of the four basic operations.

Our analysis of these studies revealed also how these
researchers investigated the development of both proce-
dural and conceptual knowledge. For the analysis of
conceptual knowledge, investigators relied on a model
developed by Fuson (1992: see also Fuson et al., 1997).
This framework is called the UDSSI triad model, after
the names of the five conceptual structures (unitary,
decade, sequence, separate, integrated) distinguished
in that model. Fach conception involves a triad of
two-way relationships among number words, written
number marks, and quantities. Each of these relation-
ships is connected to the other two. According to the
model, children begin with a unitary muitidigit concep-
tion. in which quantities are not differentiated into
groupings. and the number word and number marks are
not differentiated into parts. So. for 15 doughnuts. for
example, the 1 is not related to “teen” in “fifteen” and
the quantities are not meaningfully separable into 10
doughnuts and 5 doughnuts. In the most sophisticated
conception, the integrated sequence-separate 10s con-
ception, bidirectional relationships are established
between the 10s and the Is component of each of the
three parts (i.e., number words, marks, guantities) of
the sequence-10s and the separate-10s conceptions.
This integrated conception allows children consider-
able flexibility in approaching and solving problems
using two-digit numbers.

Fuson et al. (1997) acknowledge that this develop-
mental model is deceptively neat in several respects.
First, there are qualitative and quantitative differences
depending on the language used. The European number
words require some decade conception, and the written
marks require some conception of separate 10s and Is.
For full understanding of the words and marks, Euro-
pean children need to construct ail five of the UDSSI
multidigit conceptions. But children speaking Chinese-
based number words, for instance. that are regular and
name the 10s, have a much easier task. Second. children
learn the six relationships for a given number (or set of
numbers) at different times and may not construct the
last triad relationship for all numbers up to 99 for one
kind of conception before the first triad relationships
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tor another conception are construed. Third, not all chil-
dren construct all conceptions; these constructions de-
pend on the conceptual supports experienced by
mdividual children in their classroom and outside of
school. In this respect, it is important to note that be-
sides these five conceptual structures, Fuson’s frame-
work also contains a sixth, inadequate conception,
villed  the “concatenated single-digit conception,”
which refers to the interpretation and treatment of mul-
tidigit numbers as single-digit numbers placed adjacent
to cach other, rather than using multidigit meanings for
the digits in different positions. According to Fuson
11992, p. 263), the use of this concatenated single-digit
meaning for multidigit numbers may stem from class-
room experiences “that do not sufficiently support chil-
dren’s construction of multiunit meanings, do require
children to add and subtract multidigit numbers in a pro-
vedural, rule-directed fashion, and do set expectations
that school mathematics activities do not require one to
think or to access meanings.”

Finally, children who have more than one multi-
digit conception may use different conceptions in dif-
ferent situations or combine parts of different triads in
# single situation. For instance, even among children
who already have a more meaningful conception avail-
able, the vertical instead of a horizontal presentation of
an addition or subtraction problem may seduce them
mnto using a concatenated single-digit conceptual struc-
ture. So children’s multiunit conceptions do not con-
furm to a uniform and stage-like mode! (Fuson et al.,
19497,

We now turn to some comments on this framework.
First, the empirical basis of the latest version of the
model, as presented here, is somewhat unspecific. It re-
mains unclear which aspects of this development are
=haped by specific characteristics of the innovative
fearning environments in which it was observed, and
which aspects are shaped by more general factors
that are largely outside the control of instruction. Sec-
ond. Fuson et al.’s (1997) model focuses on only one
aspect of children’s growing understanding of numbers
and number relationships when they start exploring
and operating on multidigit numbers (Fuson, 1992;
hes et al., 1994; Treffers, 2001), namely, their base-
tei structure. Fuson (1992) herself points to the fact
that besides this “collection-based” interpretation of
sumbers, there is also the “counting-based” interpreta-
tion. Treffers refers to these two interpretations as,
sospectively, the “structuring”™ and the “positioning”
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representation of numbers. He defines “positioning™ as
“being able to place whole numbers on an empty num-
ber line with a fixed start and end point. . . . Position-
ing enables students to gain a general idea of the sizes
of numbers to be placed” (p. 104). As such, Treffers’s
“positioning™ interpretation shows some alignment
with Dehaene’s (Dehaene & Cohen, 1995) theory
about how numbers are internally represented in the
human mind (and brain), which assumes an analogue
magnitude code (a kind of mental number line) as the
main, if not only, semantic representation of a number.
Although several mathematics educators working in
the domain of multidigit arithmetic give this counting-
based or positioning interpretation a prominent place in
their experimental curricula, textbooks, and instruc-
tional materials (see. e.g., Beishuizen, 1999; Selter.
1998; Treffers, 2001), we are not aware of any ascer-
taining study that describes in a broad and systematic
way the development of this latter aspect of children’s
growing conceptual knowledge of numbers and its rela-
tionship to the other aspect of multidigit number
development.

To summarize, whereas in the 1970s and 1980s re-
search focused on children’s solutions of arithmetic
problems involving relatively small whole numbers, re-
searchers afterward paid more attention to problems
that involve multidigit calculations. Significant progress
has been made in identifying and characterizing the dif-
ferent concepts and strategies that children construct to
calculate with multidigit numbers besides the regularly
taught standard algorithms for writien computation.
Most classifications of children’s procedures for operat-
ing on multidigit numbers distinguish among three basic
categories of strategies of mental arithmetic:

1. Strategies where the numbers are primarily secen as
objects in the counting row and for which the opera-
tions are movements along the counting row: further
(+) or back () or repeatedly further (x) or repeatedly
back ().

2. Strategies where the numbers are primarily seen as
objects with a decimal structure and in which opera-
tions are performed by splitting and processing the
numbers based on this structure.

1

Strategies based on arithmetic properties where the
numbers are seen as objects that can be structured in
all sorts of ways and where operations take place by
choosing a suitable structure and using the appropri-
ate arithmetic properties (see also Buys, 2001).
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Each of these three basic forms can be performed at
different levels of internalization. abbreviation, ab-
straction, and formalization. Moreover. each of these
categories can be found in each of the four arithmetic
operations.

The description of the past decade’s research on mul-
tidigit mental arithmetic has pointed to the invented na-
ture of some of these procedures of mental arithmetic
and to the flexible or adaptive use of different strategies
as a basic characteristic of expertise in multidigit arith-
metic (see also Hatano, 2003). The available work has
revealed the impossibility of separating the learning of
the procedures for doing multidigit arithmetic from the
development of base-10 number concepts as well as
other, complementary conceptualizations of number. In
their review of the relationship between conceptual and
procedural knowledge of multidigit arithmetic, Rittle-
Johnson and Siegler (1998) report several kinds of em-
pirical evidence for this close relationship. At the same
time, they refer to some research evidence (Resnick &
Omanson, 1987) showing that in conventional instruc-
tion, which emphasized practicing procedures without
linking this practice to conceptual understanding, the
links between conceptual and procedural development
are much looser. Finally, the research yielded evidence
for the “dispositional nature” of multidigit arithmetic.
This is convincingly documented, albeit in a negative
way, by many traditionally taught children’s inclination
to apply their standard algorithms in a stereotyped,
stubborn way, even in cases where mental arithmetic
seems much more appropriate, such as for 24,000/6,000
= or 4,002 ~ 3,998 = (Buys, 2001; Tref-
fers, 1987, 2001), and by their lack of self-confidence to
have a go and take risks when leaving the safe path of
standard algorithms (Thompson, 1999).

Word Problem Solving

Using the information-processing approach, research on
the cognitive processes involved in solving one-step ad-
dition and subtraction as well as multiplication and divi-
sion problems was flourishing during the 1980s and the
early 1990s (for extensive and thorough reviews, see
Fuson, 1992; Greer, 1992; see also Verschaffel &
De Corte, 1997). This work has substantially advanced
our understanding of the development of children’s solu-
tion processes and activities for word problems. For in-

stance, there has been considerable agreement concern-
ing the categorization of real-world addition and sub-
traction situations involving three quantities in terms of
their underlying semantic structure: change, combine,
and compare situations. Change problems refer to a dy-
namic situation in which some event changes the value
of a quantity (e.g.. Joe had 3 marbles; then Tom gave
him 5 more marbles; how many marbles does Joe have
now?). Combine problems relate to static situations
where there are two parts that are considered either sep-
arately or in combination as a whole (e.g.. Joe and Tom
have 8 marbles altogether; Joe has 3 marbles; how many
marbles does Tom have?). Compare problems involve
two amounts that are compared and the difference be-
tween them (e.g., Joe has 8 marbles; Tom has 5 marbles;
how many fewer marbles does Tom have than Joe?).
Within each of these three categories, further distinc-
tions can be made depending on the identity of the un-
known quantity; furthermore, change and compare
problems are also subdivided depending on the direction
of the transformation (increase or decrease) or the rela-
tionship (more or less), respectively.

Using a variety of techniques, such as written tests,
individual interviews, computer simulation, and eye-
movement registration, extensive research on these word
problems has documented children’s performance on the
different problem types, the diversity in the solution
strategies they use to solve the problems, and the nature
and origin of their errors (e.g., Verschaffel & De Corte,
1993). For instance, the psychological significance of
the categorization of the word problems was convinc-
ingly shown in many studies with 5- to 8-year-old chil-
dren, reporting that word problems that can be solved by
the same arithmetic operation but that belong to distinct
semantic categories differ substantially in their level of
difficulty; this demonstrates the importance of master-
ing knowledge of the different semantic problem
structures for competent problem solving. From a devel-
opmental perspective, this research has demonstrated
that most children entering primary school can solve the
most simple one-step problems (e.g., change problems
with the result set unknown, or combine problems with
the whole unknown) using a solution strategy based on
modeling the relations and actions described in them.
Later on, children’s proficiency gradually develops and
increases in two important directions. First, informal,
external, and cumbersome strategies are progressively
replaced by more formalized, abbreviated and internal-



ized, and more efficient strategies. Second, whereas ini-
tially children have a different solution method for each
problem type that directly reflects the problem situation,
they develop more general methods that apply to classes
of problems with a similar underlying mathematical
structure. Therefore, it is only in the later phases of de-
velopment that children demonstrate problem-solving
behavior that reflects the sequence of steps as described
in models of expert problem solving: (a) representing the
problem situation; (b) deciding on a solution procedure;
(c) carrying out the solution procedure. Because at ear-
lier levels of development they do not proceed through
those steps, but use a solution method that directly mod-
cls the situation, it is not surprising that children then
solve problems correctly without first writing a corre-
sponding number sentence (Fuson, 1992), or even with-
out being able to write such a number sentence on
request (De Corte & Verschaffel, 1985).

The research on multiplication and division word
problems from the information-processing perspective
during that period did not lead to a similar coherent
theoretical framework as for addition and subtraction
problems, but important related results were obtained
{Verschaffel & De Corte, 1997). Based on a review of
previous work, Greer (1992) proposed a categorization
scheme representing different semantic types of multi-
plication and division situations. Paralleling the devel-
opmental findings for addition and subtraction, it was
ubserved that many children can solve one-step multipli-
cation and division problems involving small numbers
before they have had any instruction about these opera-
tions. Also, here they use a large variety of informal
strategies that reflect the action or relationship de-
scribed in the problem situation. Likewise, the develop-
ment proceeds in the direction of using more efficient,
more formal, and internalized strategies. A difference
tfrom addition and subtraction that emerges from the lit-
crature, however, is that multiplicative thinking develops
more slowly (Anghileri, 2001; Clark & Kamii, 1996).

Overall, the extensive body of research in the 1980s
and the early 1990s relating to word problems involving
the four basic operations has resulted in identifying
different knowledge components of proficiency in
solving such problems. This points to the significant
1ole of domain-specific conceptual knowledge concern-
snp semantic structures underlying additive and multi-
plicative problem situations, and to the diversity of
strategies for solving them. Substantial progress has
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been made in tracing the developmental steps that chil-
dren pass through in acquiring problem-solving compe-
tence: Starting from a level that is characterized by
informal, concrete, and laborious procedures, they pro-
gressively acquire more formal, abstract, and efficient
strategies. Nevertheless, important issues for further in-
quiry remain. First, previous research that focused on
the initial and middle stages of the development of addi-
tive and multiplicative concepts needs to be enlarged to
more advanced developmental levels involving exten-
sion beyond the domain of positive integers (Greer,
1992; Vergnaud, 1988). Second, and as argued already
in 1992 by Greer, whereas in the past the study of both
conceptual fields occurred separately, future work
should explicitly aim at the integration of additive and
multiplicative conceptual knowledge.

A third critical comment on the research carried out
in the information-processing tradition largely explains
why this approach to the study of word problem solving
has fallen into the background in the past decade. As ar-
gued in 1992 by Fuson, most of that research used only
word problems that are restricted school versions of the
real world. Indeed, researchers in this tradition have re-
lied heavily on a narrow range of problems, namely,
brief, stereotyped, contextually impoverished pieces of
text that contain all the necessary numerical data and
end with a clear question that can undoubtedly be an-
swered by performing one or more arithmetic operations
on these numbers. These constraints raise serious doubts
about the generalizability of the theoretical assertions
and the empirical outcomes (such as the importance
of semantic schemata) toward solving more realistic,
context-rich, and more complex problems in situations
inside as well as outside the school (Verschaffel & De
Corte, 1997). Therefore, researchers who stress the im-
portance of social and cultural contexts in problem solv-
ing have engaged in investigations aimed at unraveling
children’s solution activities and strategies relating to
more authentic and contextually embedded problems.

Well-known examples of this approach are the studies
of street mathematics and school mathematics by Nunes,
Schliemann, and Carraher (1993) in Recife, Brazil (see
also Saxe, 1991). For example, in one study, Nunes et al.
observed that young street vendors (9- to 15-year-olds)
performed very well on problems in the street-vending
context (such as selling coconuts), but less well on iso-
morphic school mathematics tasks. In addition, they
found that in the street-vending situation, the children



118 Mathematical Thinking and Learning

solved the problems using informal mathematical rea-
soning and calculation processes that differ consider-
ably from the formal, school-prescribed procedures they
tried to use with much less success on the textbook
problems. These findings show in a rather dramatic way
the gap that can exist in children’s experience and be-
liefs between the world of the school and the reality of
everyday life; to bridge this gap it is thus necessary in
mathematics education to take into account children’s
informal prior knowledge.

Another line of research on mathematics problem
solving goes back to the work of Polya. who in 1945
published a prescriptive mode! of the stages of problem
solving involving the following steps: understanding the
problem; devising a solution plan; carrying out the plan;
and looking back or checking the solution. In each of
these steps, Polya distinguishes a number of heuristics
that can be applied to the problem, such as “Draw a fig-
ure” and “Do you know a related problem?” In the early
days of the information-processing approach to the
study of cognition, and using emerging ideas of artifi-
cial intelligence, Newell and Simon (1972) developed
the well-known General Problem Solver, a computer
program that solved a variety of rather artificial, puzzle-
like problems (e.g., cryptograms). applying general
strategies akin to Polya’s heuristics. such as means-ends
analysis. But research revealed over and over that
children’s and students’ solution processes of word
problems do not at all fit the stages of Polya’s model. In
this respect. two important phenomena observed in stu-
dents’ problem solving are suspension of sense making
and lack of strategic approaches to problems. We next
briefly review research relating to both phenomena.

A well-known and spectacular illustration of the sus-
pension of sense making in children’s problem solving
was reported by French researchers in 1980 (Institut de
Recherche sur I'Enseignement des Mathématiques de
Grenoble, 1980; for an extensive review of this theme,
see Verschaffel, Greer, & De Corte, 2000). They admin-
istered to a group of first and second graders the follow-
ing absurd problem: “There are 26 sheep and 10 goats
on a ship. How old is the captain?” It turned out that a
large majority of the children produced a numerical an-
swer (mostly 36) without any apparent awareness of the
meaninglessness of the problem. Similar results were
obtained in Germany (Radatz, 1983) and Switzerland
{Reusser, 1986) with a number of related problems. The
phenomenon showed also up in the United States; the

oft-cited example comes from the Third National As-
sessment of Educational Progress in 1983 with a sample
of 13-year-olds (Carpenter, Lindquist, Matthews, & Sil-
ver, 1983): “An army bus holds 36 soldiers. If 1,128 sol-
diers are being bussed to their training site, how many
buses are needed?” Although about 70% of the students
correctly carried out the division of 1,128 by 36, obtain-
ing the quotient 31 and remainder 12, only 23% gave 32
buses as the answer; 19% gave as answer 31 buses, and
another 29% answered 31 remainder 12. In all these ex-
amples, students seem to be affected by the belief that
real-world knowledge is irrelevant when solving mathe-
matical word problems, and this results in nonrealistic
mathematical modeling and problem solving.

Using the same or similar word problems under
largely the same testing conditions, this phenomenon
was very extensively studied and replicated indepen-
dently with students in the age range of 9 to 14 years
during the 1990s, initially in several European coun-
tries (Belgium, Germany, Northern Ireland, and
Switzerland), but also in other parts of the world
(Japan, Venezuela; for an overview of these studies, see
Verschaffel et al., 2000). In the basic study (Verschaf-
fel, De Corte, & Lasure, 1994), a paper-and-pencil test
consisting of 10 pairs of problems was administered
collectively to a group of 75 fifth graders (10- to 11-
year-old boys and girls). Each pair of problems con-
sisted of a standard problem, that is, a problem that can
be solved by the straightforward application of one or
more arithmetic operations with the given numbers
(e.g., “Steve bought 5 planks of 2 meters each. How
many planks of 1 meter can he saw out of these
planks?”), and a paraliel problem in which the mathe-
matical modeling assumptions are problematic, at least
if one seriously takes into account the realities of the
context called up by the problem statement (e.g., “Steve
bought 4 planks of 2.5 meters each. How many planks
of 1 meter can he saw out of these planks?”). An analy-
sis of the students’ reactions to the problematic tasks
yielded an alarmingly small number of realistic 1
sponses or comments based on the activation of reul
world knowledge (responding to the problem about the
2.5 m planks with 8 instead of 10). Indeed, only 17% of
all the reactions to the 10 problematic problems could
be considered realistic, either because the realistic an
swer was given, or the nonrealistic answer was accont
panied by a realistic comment (e.g., with respect to the
planks problem, some students gave the answer 10, but



added that Steve would have to glue together the four
remaining pieces of .5 m two by two). The fact that
these studies yielded very similar findings worldwide
justifies the conclusion that children’s belief that real-
world knowledge is irrelevant when solving word prob-
lems in the mathematics classroom represents a very
robust research result. Moreover, additional studies in
our center (De Corte, Verschaffel, Lasure, Borghart, &
Yoshida, 1999), but also by other European researchers
(see Greer & Verschaffel, 1997), have shown that this
misbelief about the role of real-world knowledge dur-
ing word problem solving is very strong and resistant to
change.

How is it possible that the results of some years of
mathematics education could be the willingness of chil-
dren to collude in negating their knowledge of reality?
Gradually, researchers came to realize that this apparent
“senseless behavior” should not be considered the result
of a “cognitive deficit” in children, but should be con-
strued as sense making of a different sort, namely, a
strategic decision to play the “word problem game” (De
Corte & Verschaffel, 1985). As expressed by Schoenfeld
(1991, p. 340):

Such behavior is sense-making of the deepest kind. In the
context of schooling, such behavior represents the con-
struction of a set of behaviors that results in praise for
good performance, minimal conflict, fitting in socially
and so on. What could be more sensible than that?

Students’ strategies and beliefs develop from their
perceptions and interpretations of the didactic contract
tBrousseau, 1997) or the sociomathematical norms
tYackel & Cobb, 1996) that determine —largely implic-
itly—how they behave in a mathematics class, how they
think, and how they communicate with the teacher. This
enculturation seems to be mainly caused by two aspects
of current instructional practice: the nature of the (tra-
ditional) word problems given and the way these prob-
lems are conceived and treated by teachers. Support for
the latter factor comes from a study by Verschaffel, De
torte, and Borghart (1997), where preservice elemen-
tity school teachers were asked, first, to solve a set of
poblems themselves and, second, to evaluate realistic
atd unrealistic answers from imaginary students to the
same set of problems. The results indicated that these
tuture teachers shared, though in a less extreme form,
«udents’ tendency to suspend sense making.
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Research has also documented convincingly the lack
of strategic aspects of proficiency in students’ solution
activities of word problems. When confronted with a
problem, they do not spontaneously use valuable heuris-
tic strategies (such as analyzing the problem, making a
drawing of the problem situation, decomposing the prob-
lem) in view of constructing a good mental representation
of the problem as a lever to understanding the problem
well. For instance, in a study by De Bock, Verschaffel,
and Janssens (1998), 120 12- to 13-year-old seventh
graders were administered a test with 12 items involving
enlargements of similar plane figures, six of which were
so-called proportional, and the other six nonproportional
items, as illustrated by the following examples:

* Proportional items: Farmer Gus needs approximately
4 days to dig a ditch around a square pasture with a
side of 100 m. How many days would he need to dig a
ditch around a square pasture with a side of 300 m?

* Nonproportional item: Farmer Carl needs approxi-
mately 8 hours to manure a square piece of land with
a side of 200 m. How many hours would he need to
manure a piece of land with a side of 600 m?

In line with what was predicted, the proportional items
were solved very well (over 90% correct), whereas per-
formance on the nonproportional items was extremely
weak (only about 2% correct). An inspection of the an-
swer sheets revealed that only 2% of the students
spontaneously made a drawing of the nonproportional
items; in other words, most 12- to 13-year-olds were
not at all inclined to apply to these problems the appro-
priate heuristic “Make a drawing of the problem.”
Even the encouragement to make a drawing or the pre-
sentation of a ready-made drawing when given a sec-
ond test did not significantly increase performance.
Continued research using individual interviews for the
in-depth analysis of the thinking processes of 12- to
13- and 15- to 16-year old students has confirmed the
improper use of proportional or linear reasoning. as
well as its resistance to change (De Bock, Van Dooren,
Janssens, & Verschaffel, 2002).

Similar outcomes revealing the lack of use of heuris-
tic strategies, especially in weak problem solvers, have
been reported by many other scholars, even with older
subjects (e.g., De Corte & Somers, 1982; Hegarty,
Mayer, & Monk, 1995; Van Essen, 1991). As argued in
the NRC (2001a) report, weak problem solvers often
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rely on very superficial methods to solve problems. For
example, when given the problem “At ARCO, gas sells
for $1.13 per gallon. This is 5 cents less per gallon than
gas at Chevron. How much does 5 gallons of gas cost at
Chevron?” they focus on the numbers and on the key-
word “less,” which triggers the wrong arithmetic opera-
tion, in this case subtraction. In contrast, successful
problem solvers build a mental representation of the
problem by carefully analyzing the situation described,
focusing on the known and unknown quantities and their
relationships.

But not being heuristic is not the only flaw in stu-
dents’ (especially the weaker ones) problem-solving ap-
proach. Maybe even more important is the absence of
metacognitive activities during problem solving. Indeed,
research has clearly shown that the use of cognitive self-
regulation skills—such as planning a solution process,
monitoring that process, evaluating the outcome, and re-
flecting on one’s solution strategy —is a major charac-
teristic of expert mathematics problem solving (e.g.,
Schoenfeld, 1985, 1992). Comparative studies have con-
vincingly documented that successful problem solvers
more often apply self-regulation skills than unsuccess-
ful ones, in the United States (see, e.g., Carr & Biddle-
comb, 1998; Garofalo & Lester, 1985, Silver, Branca, &
Adams, 1980) as well as in other parts of the world. For
example, in the Netherlands, Nelissen (1987) found that
good problem solvers among elementary school children
were better at self-monitoring and reflection than poor
problem solvers; Overtoom (1991) registered analogous
differences between gifted and average students at the
primary and secondary school levels. De Corte and
Somers (1982) observed a strong lack of planning and
monitoring of problem solving in a group of Flemish
sixth graders, leading to poor performance on a word
problem test. In his well-known studies, Krutetskii
(1976) observed differences between elementary and
secondary school students of different ability levels
with respect to metacognitive activities during word
problem solving. In summary, there is abundant evidence
showing that cognitive self-regulation constitutes a
major aspect of skilled mathematical learning and prob-
lem solving, but that it is often absent, especially in
weak problem solvers.

The work of Krutetskii (1976) showing differences
between primary and secondary school students elicits
the question of whether there are developmental differ-
ences in metacognitive awareness and skills. However,
based on an analysis of a number of studies, Carr and

Biddlecomb (1998, p. 73) conclude that young as well as
older children (up to middle and high school) fail in mon-
itoring and evaluating their problem solving activities:

Taken together, metacognitive research in mathematics is
similar to metacognitive research in other domains: Chil-
dren can benefit from both strategy-specific knowledge
and from metacognitive awareness. Metacognitive re-
search in mathematics, however, differs in showing that
the use of cognitive monitoring and evaluation frequently
do not appear to develop in children even in late childhood.

This raises a challenging issue for future research: Why
is there, or should there be, a difference in this respect
between mathematics and other domains? Indeed, the
extensive literature on metacognitive development
(Kuhn, 1999, 2000) suggests that metacognitive aware-
ness emerges in children by age 3 to 4, and that starting
from there, the executive control of cognitive function-
ing is acquired gradually through multiple developmen-
tal transitions (Zelazo & Frye, 1998). Development does
not occur as a single transition, but “entails a shifting
distribution in the frequencies with which more or less
adequate strategies are applied, with the inhibition of
inferior strategies as important an achievement as the
acquisition of superior ones” (Kuhn, 2000, p. 179; see
also Siegler, 1996).

Taking into account that it is plausible that the nature
and development of cognitive self-regulation skills show
some generality across domains (Kuhn, 2000), this cur-
rent perspective on metacognitive development presents
an interesting framework for future research on the de-
velopment of mathematics-related self-regulation skills,
especially because enhancing metacognitive awareness
and skills constitutes a major component of mathemati-
cal proficiency and, thus, an important developmental
and educational goal.

The preceding discussion shows that over the past 20
years substantial progress has been made in understand-
ing the role and development of major components of a
mathematical disposition in children’s word problem
solving. These components are domain-specific knowl-
edge (conceptual understanding as well as computa-
tional fluency), heuristic strategies, and self-regulation
skills. Although the available work points to the inter-
woven character of the different components, a chal-
lenge for future research consists in unraveling in
greater detail the interactions among those strands in
the acquisition and development of competence in math-
ematical problem solving.



Mathematics-Related Beliefs

Based on 2 decades of research, there is currently quite
general agreement in the literature that beliefs that stu-
dents hold about mathematics and about mathematics
education have an important impact on their approach to
mathematics learning and on their performance (Leder,
Pehkonen, & Torner, 2002; Muis, 2004). In the Curricu-
lum and Evaluation Standards for School Mathematics
the NCTM echoed this point of view in 1989: “These
beliefs exert a powerful influence on students’ evalua-
tion of their own ability, on their willingness to engage
in mathematical tasks, and on their ultimate mathemati-
cal disposition” (p. 233).

To acquire the intended mathematical disposition, it
is thus important that students develop positive beliefs
about mathematics as a domain and about mathematics
education. This converges with the component of “pro-
ductive disposition,” one of the five strands of mathe-
matical proficiency proposed in the 2001 report of the
NRC (2001a, p. 131): “Productive disposition refers to
the tendency to see sense in mathematics, to perceive it
as both useful and worthwhile, to believe that steady ef-
fort in learning mathematics pays off, and to see oneself
as an effective learner and doer of mathematics.” How-
ever, the available research shows that today the situa-
tion in mathematics classrooms is remote from this
ideal. One pertinent illustration derives from studies in
which students of different ages were asked to draw a
mathematician at work. In one study by Picker and
Berry (2000), 476 12- to 13-year-olds from several
countries (United States, United Kingdom, Finland,
Sweden, and Romania) were asked to make such a draw-
ing and to comment on it in writing. A major conclusion
from the study is that in all the countries involved, the
gist of the images produced by the students was that of
powerless little children confronted with mathemati-
cians portrayed as authoritarian and threatening. Ac-
cording to the authors, the dominant picture of a
mathematician that emerged from their study is in line
with the images obtained in a similar investigation
by Rock and Shaw (2000) with children ranging from
kindergarten through the eighth grade. As it is plausible
that children’s drawings reflect their beliefs about math-
cmatics, it is obvious that they do not perceive this do-
main as attractive and interesting.

Based on an analysis of the literature, De Corte, Op 't
tiynde, and Verschaffel (2002; see also Op ’t Eynde, De
Corte, & Verschaffel, 2002) have made a distinction
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among three kinds of student beliefs: beliefs about the
self in relation to mathematical learning and problem
solving (e.g., self-efficacy beliefs relating to mathemat-
ics), beliefs about the social context (e.g.. the social
norms in the mathematics class), and beliefs about
mathematics and mathematical learning and problem
solving. With respect to the last type, it has been shown
that, probably as a consequence of current educational
practices, students of a wide range of ages and abilities
acquire beliefs relating to mathematics that are naive,
incorrect, or both, but that have mainly a negative or in-
hibitory effect on their learning activities and ap-
proaches to mathematics tasks and problems (Muis,
2004; Schoenfeld, 1992; Spangler, 1992). From a cer-
tain perspective, the research reported earlier on the
suspension of sense making in solving word problems is
also an illustration of these phenomena. In other words,
the available data are in line with the bleak situation
that emerged from the studies of Picker and Berry
(2000) and Rock and Shaw (2000). According to Greeno
(1991a), most students learn from their experiences in
the classroom that mathematics knowledge is not some-
thing constructed by the learner. either individually or
in a group, but a fixed body of received knowledge. In a
similar way, Lampert (1990) characterizes the common
view about mathematics as follows: Mathematics is as-
sociated with certainty and with being able to quickly
give the correct answer; doing mathematics corresponds
to following rules prescribed by the teacher; knowing
math means being able to recall and use the correct rule
when asked by the teacher; and an answer to a mathe-
matical question or problem becomes true when it is ap-
proved by the authority of the teacher. She also argues
that those beliefs are acquired through years of watch-
ing, listening, and practicing in the mathematics class-
room. A case study by Boaler and Greeno (2000), this
time at the secondary school level, likewise suggests
that students’ problematic beliefs result more or less di-
rectly from the actual curriculum and classroom prac-
tices and culture.

Convincing empirical evidence for the claim that stu-
dents are afflicted by such beliefs has been reported by
Schoenfeld (1988) in an article with the strange title
“When Good Teaching Leads to Bad Results: The Dis-
asters of ‘Well-Taught’ Mathematics Courses.” Schoen-
feld made a year-long intensive study of one 10th-grade
geometry class with 20 students, along with periodic
data collections in 11 other classes (210 students alto-
gether) involving observations, interviews with teachers
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and students, and questionnaires relating to students’
perceptions about the nature of mathematics. The stu-
dents scored well on typical achievement measures, and
the mathematics was taught in a way that would gener-
ally be considered good teaching. Nevertheless, it was
found that students acquired debilitating beliefs about
mathematics and about themselves as mathematics
learners, such as “All mathematics problems can be
solved in just a few minutes” and “Students are passive
consumers of others’ mathematics.” 1t is obvious that
such misbeliefs are not conducive to a mindful and per-
sistent approach to new and challenging problems. Other
strange beliefs that have been observed in students, and
that are to a large extent responsible for the lack of
sense making when doing word problem solving, are
“Mathematics problems have one and only one right an-
swer” and " The mathematics learned in school has little
or nothing to do with the real world” (see, e.g., Schoen-
feld, 1992).

With regard to beliefs about the self, it has been
shown that self-etficacy beliefs are predictive of pertor-
mance in mathematics problem solving in university stu-
dents (Pajares & Miller, 1994). However, this seems to
be the result of a developmental trend that mirrors an
evolution in the nature and complexity of these beliefs.
For instance. a study by Kloosterman and Cougan
{1994) on a sample of 62 students in grades 1 to 6 sug-
gests that students’ confidence beliefs and liking of
mathematics in the first two grades of elementary
school are independent of their achievement levels, but
that by the end of elementary school, these beliefs are
related to performance. and that low achievers, besides
having low confidence, start to dislike mathematics.
Wigfield et al. (1997) also found that in the beginning of
primary school, children view mathematics as important
and themselves as competent to master it (see also NRC,
2001a). But later during primary school. their compe-
tence beliefs decrease. Middleton and Spanias (1999)
point to the junior high school level as the crucial stage
where students” beliefs about mathematics become more
influential; unfortunately, a large number of students
start developing more negative beliefs about the self in
relation to mathematics (see also Muis, 2004; Wigfield
et al., 1997).

As already stressed. several authors have argued that
the negative mathematics-related beliefs of students of
different ages are largely induced by current educational
practices. However, although anecdotal observations
and a few case studies point in that direction, this must
be considered a plausible hypothesis in need of further

research. Therefore, a major chatllenge for continued in-
quiry is the systematic study of the interplay between
students’ beliets and instructional intervention, focus-
ing on the design of interventions that can facilitate the
acquisition of the intended productive disposition. This
type of research would at the same time contribute
to tracing in a more detailed way the development of
mathematics-related beliefs in students. Indeed, as is
the case for general epistemological beliefs (i.e., beliefs
about knowing and knowledge; see Hofer & Pintrich,
2002), there is a need for better research-based knowi-
edge about the nature and the processes of development
of mathematics-related beliefs and about the internal
and contextual factors that induce change in those be-
liefs in students (see also Muis, 2004).

Summary

The preceding selective review of research relating to
components of mathematical competence shows that
over the past decades, substantial progress has been
made in unraveling major and educationally refevant as-
pects of their nature and development. The discussions
have also shown the interdependency of the distinct
components of proficiency in mathematics, for instance,
the interconnectedness of conceptual and procedural
knowledge in computation skills; the integration of do-
main knowledge. heuristic strategies, self-regulation
skills, and beliefs in problem solving; and the complex-
ity of number sense.

However, throughout this analysis of major compo-
nents of a mathematical disposition, it has also become
clear that important unanswered questions call for con-
tinued inquiry in view of the elaboration of a more en-
compassing and overarching theoretical framework of
the development of mathematical competence. For in-
stance, a crucial and still largely unresolved question
with respect to the development of several components,
such as basic conceptual and procedural knowledge
structures, is to what degree they are either biologically
prepared and, thus, more or less universal schemas, or
are acquired in and attuned to situational contexts (see,
e.g., Resnick, 1996). Whether a conceptual structure is
subjected mainly to the first or to the second trend has
important implications for teaching: It constrains or fa-
cilitates its sensitivity for instructional intervention. A
related topic for further investigation is the more fine-
grained unraveling of the interactions among the differ-
ent components of mathematical competence. Future
research must address more intensively the development



Learning Mathematics: Acquiring the Components of Competence 123

of competence in other subdomains of mathematics,
such as rational numbers, negative numbers, propor-
tional reasoning, algebra, measurement, and geometry.
Ilustrative in this respect are the following quotes from
the NRC (2001a) report, Adding It Up: Helping Children
Learn Mathematics:

Moreover, how students become proficient with rational
numbers is not as well understood as with whole num-
bers. (p. 231)

Compared with the research on whole numbers and
even on noninteger rational numbers, there has been rela-
tively little research on how students acquire an under-
standing of negative numbers and develop proficiency in
operating with them. (p. 244)

LEARNING MATHEMATICS: ACQUIRING
THE COMPONENTS OF COMPETENCE

The learning component of the CLIA model should pro-
vide us with an empirically based description and expla-
nation of the processes of learning and development that
must be elicited and kept going in students to facilitate
in them the acquisition of the intended mathematical dis-
position and the components of competence involved in
it. Research over the past decades has made progress in
that direction and has resulted in the view of mathemat-
ics learning as the active and cumulative construction
in a community of learners of meaning. understanding
and skills based on modeling of reality (see. e.g., De
Corte et al., 1996; Fennema & Romberg. 1999: Nunes &
Bryant, 1997; Steffe, Nesher, Cobb, Goldin. & Greer,
1997). This conception implies that productive mathe-
matics learning has to be a self-regulated, situated, and
collaborative activity.

Learning as Cumulative Construction of
Knowledge and Skills

The view that learning is a cumulative and constructive
activity has nowadays become common ground among
educational psychologists in general, and among mathe-
matics educators in particular, and there is substantial
empirical evidence supporting it (e.g., NRC, 2000, Si-
mons, Van der Linden, & Dufty, 2000, Steffe & Gale,
1995). What is essential in the constructivist approach
to learning is the mindful and effortful involvement of
learners in the processes of knowledge and skill acquisi-
tion in interaction with the environment and building on
their prior knowledge. What needs to be constructed is
the process of doing mathematics rather than the mathe-

matical content (Greer, 1996). This is well illustrated in
the work of Nunes et al. (1993) with Brazilian street
vendors referred to earlier. In one case, the interviewer,
acting as a customer, bought from a 12-year-old vendor
10 coconuts at 35 cruzeiros a piece. After the inter-
viewer said, “I’d like 10. How much is that?” there was a
pause and then the vendor reacted as follows: “Three
will be 105; with three more that will be 210. [Pause] |
need four more. That is . . . [pause] 315. ... 1think it is
3507 (p. 19). This cumbersome but accurate calculation
procedure was clearly invented by the street vendor
himself. Indeed. third graders in Brazil learn to multi-
ply any number by 10 by just putting a zero to the right
of that number.

In our own work, we observed in first graders a great
variety of solution strategies for one-step addition and
subtraction problems (Verschaffel & De Corte, 1993).
Many of these strategies were never explicitly taught in
school, but they were invented by the children them-
selves. For example, to solve the difficult change prob-
lem “Pete had some apples; he gave 3 apples to Ann; now
Pete has 7 apples; how many apples did Pete have in the
beginning?” some children successfully applied a kind
of trial-and-error strategy: They estimated the size of
the initial amount and checked their guess by subtract-
ing it by 5 to see if there were 7 left; if not, they made a
new guess and checked again.

But the constructive nature of learning is also evi-
denced in a negative way in the misconceptions and de-
fective procedures that many learners acquire in a
variety of content domains, including mathematics. A
well-known illustration of the latter kind of erroneous
inventions are the so-called buggy algorithms, that is,
systematic procedural errors made by children on multi-
digit arithmetic operations, such as subtracting the
smaller digit from the larger one in each column regard-
less of position, as in the following example:

543
- 175
432

Based on task analysis and using computer simulation, it
has been shown that such bugs can be predicted as con-
structions of the child who is faced with an impasse be-
cause conditions are encountered beyond the currently
mastered procedures (VanLehn, 1990).

A well-documented misconception is the idea
that multiplication always makes bigger. There is. for
instance, overwhelming evidence from studies with
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students of different ages (from 12- to 13-year-olds up
to preservice teachers) supporting the most obvious
manifestation of this misconception, known as the mul-
tiplier effect: When given the task to choose the opera-
tion to solve a multiplication problem with a multiplier
smaller than 1, almost 50% of the preservice teachers
and almost 70% of the 12- to 13-year-olds made an in-
correct choice (mostly division instead of multiplica-
tion; Greer, 1988; see also De Corte, Verschaffel, &
Van Coillie, 1988; Greer, 1992). Remarkable from a
developmental perspective is the persistence of this
multiplier effect over a broad age range. As argued by
Hatano (1996, p. 201), “Procedural bugs and miscon-
ceptions are taken as the strongest pieces of evidence
for the constructive nature of knowledge acquisition,
because it is very unlikely that students have acquired
them by being taught.”

Notwithstanding the evidence showing that students
construct their own knowledge, even in learning envi-
ronments that are implicitly based on an information-
transmission model, today we cannot pretend to have a
well-elaborated constructivist learning theory. What
Fischbein argued in 1990 still largely holds true,
namely, “the need for a more specific definition of con-
structivism as a psychological model for mathematical
education” (p. 12). For instance, current constructivist
approaches to learning do not provide clear and detailed
guidelines for the design of teaching-learning environ-
ments (Greer, 1996; see also Davis, Maher, & Noddings,
1990). This standpoint is echoed in a recent contribution
by Cobb, Confrey, diSessa, Lehrer, and Schauble (2003)
stating that general orientations to education, such as
constructivism, often fail to offer detailed guidelines
for organizing instruction. The authors present the fol-
lowing illustration:

The claim that invented representations are good for
mathematics and science learning probably has some
merit, but it specifies neither the circumstances in which
these representations might be of value nor the learning
processes involved and the manner in which they are sup-
ported. (p. 11)

Indeed, it is important to stress that the view of learning
as an active process does not imply that students’ con-
struction of their knowledge cannot be supported and
guided by suitable interventions by teachers, peers, and
educational media (see, e.g., Grouws & Cebulla, 2000).
Thus, the claim that productive learning is accompanied
by good teaching still holds true. Moreover, as argued
in the recent volume Beyond Constructivism (Lesh &

Doerr, 2003), there are distinct categories of instruc-
tional objectives in mathematics education, and not all
of them have to be discovered and constructed au-
tonomously by the learners.

The present state of the art thus calls for continued
theoretical and empirical research aimed at a deeper un-
derstanding and a more fine-grained analysis of the na-
ture of constructive learning processes that are conducive
to the acquisition of worthwhile knowledge, (meta)cogni-
tive strategies, and affective components of skilled per-
formance, and of the role and nature of instruction in
eliciting and facilitating such learning processes.

Learning Is Increasingly Self-Regulated

If the process and not the product of learning is the focus
of constructivism, this also implies that constructive
learning has to be self-regulated. Indeed, self-regulation
“refers to the degree that individuals are metacogni-
tively, motivationally, and behaviorally active partici-
pants in their own learning process” (Zimmerman, 1994,
p. 3). It is a form of action control characterized by the
integrated regulation of cognition, motivation. and emo-
tion (De Corte, Verschaffel, & Op 't Eynde, 2000; see
also Boekaerts, 1997). Research has shown that self-
regulated learners in school are able to manage and
monitor their own processes of knowledge and skill ac- -
quisition; that is, they master and apply self-regulatory
learning and problem-solving strategies on the basis
of self-efficacy perceptions in view of attaining valued
1989). Skilled self-
regulation enables learners to orient themselves to new
learning tasks and to engage in the pursuit of adequate
learning goals; it facilitates appropriate decision making
during learning and problem solving, as well as the mon-
itoring of an ongoing learning and problem-solving pro-
cess by providing their own feedback and performance
evaluations and by keeping themselves concentrated and
motivated. It has also been established in a variety
of content domains, including mathematics, that the de-
gree of students’ self-regulation correlates strongly
with academic achievement (Zimmerman & Risemberg,
1997). The importance of self-regulation for mathemat-
ics learning has been stressed, especially by reflective
activities, for instance, by Nelissen (1987). During
learning, the student has to continuously make decisions
about the next steps to be taken. for example, looking
back for a formula or theorem, reconsidering a problem
situation from a different perspective or restructuring
it, or making an estimation of the expected outcome.

academic goals (Zimmerman,
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Moreover, it is necessary to monitor learning processes
through intermediate evaluations of the progress made
in acquiring, understanding, and applying new knowl-
edge and skills, as well as of one’s motivation and con-
centration on the learning task.

However, as we reported in the section on word
problem solving, many students, especially the weaker
ones, do not master appropriate and efficient cognitive
self-regulation skills that facilitate their learning of
new knowledge and skills and enhance their success in
mathematical problem solving. In some ways, this is not
so surprising. Indeed, observing current teaching prac-
tices in mathematics classrooms, one often has the im-
pression that regulating students’ learning and problem
solving appropriately is considered to be the task of the
teacher. This induces the beliefs mentioned earlier,
namely, that mathematics is a fixed body of knowledge
received from the teacher and that doing mathematics
is following the rules prescribed by the teacher. At the
same time, as shown earlier, students often develop in-
appropriate self-regulating learning activities that
result in defective algorithmic procedures and/or mis-
conceptions.

On a more positive note, the literature shows that the
self-regulation of learning can be enhanced through ap-
propriate guidance (see, e.g., Schunk, 1998; Zimmer-
man, 2000). We will come back to this in the section on
intervention.

Learning Is Situated and Collaborative

The idea that learning and cognition are situated activi-
ties was strongly put forward in the late 1980s in
reaction to the then dominant cognitive view of learning
and thinking as highly individual and purely mental
processes occurring in the brain and resulting in encap-
sulated mental representations (J. S. Brown, Collins, &
Duguid, 1989). This cognitive view is in line with
Sfard’s (1998) acquisition metaphor of learning focused
on individual enrichment through acquiring knowledge.,
skills, and so on. In contrast, the situated perspective
converges with the participation metaphor: It stresses
that learning is enacted essentially in interaction with
social and cultural contexts and artifacts, and especially
through participation in cultural activities and contexts
(Greeno & the Middle School Mathematics through Ap-
plications Project Group, 1998; Lave & Wenger, 1991;
see also Bruner, 1996; Greeno, Collins, & Resnick,
1996, Sfard, 1998). This situated conception of learning
and cognition is nowadays quite widely shared in the

mathematics education community. The calculation pro-
cedure invented by the Brazilian street vendor in the re-
alistic context of his business is a nice illustration of
this view. It also is representative of the outcomes of a
series of ethnomathematical studies of the informal cal-
culation procedures and problem-solving strategies of
particular groups of children and adults who are in-
volved in specific everyday cultural practices of busi-
ness, tailoring, weaving, carpentry, grocery, packing,
cooking, and so on (Nunes, 1992; for a summary, see De
Corte et al., 1996).

Although the situated nature of learning has been
documented especially well in studies carried out in
everyday contexts, it is obvious that situatedness applies
to school learning as well. For instance, the young street
vendors in the study by Nunes et al. (1993) who were so
successful in using informal invented strategies and pro-
cedures when selling coconuts did not do well when
solving isomorphic textbook problems in school. There
they tried, without much success, to apply the formal
procedures learned in the mathematics lessons. The
work on the suspension of sense making when doing
school word problems can be considered another line of
evidence for the importance of the social and cultural
situatedness of mathematical thinking and learning
(Lave, 1992).

The situated perspective on learning has fueled and
supported the movement toward more authentic and re-
alistic mathematics education, although it has to be
added that such an approach to mathematics teaching
and learning was already introduced and developed ear-
lier by several groups of mathematics educators; the
most typical example in this respect is probably
Freudenthal, who developed and implemented, together
with his collaborators, Realistic Mathematics Education
in the Netherlands in the 1970s (see, e.g., Streefland,
1991; Treffers, 1987).

Of special importance from an educational perspec-
tive is that the situativity view of learning and cognition
has obviously also contributed to emphasis on the im-
portance of collaboration for learning. In fact, because
it emphasizes the social and participatory character of
learning, the situated perspective implies the collabora-
tive nature of learning. This means that effective learn-
ing is not a purely solo activity, but essentially a
distributed one; that is, the learning efforts are distrib-
uted over the individual student, his or her partners in
the learning environment, and the technological re-
sources and tools that are available. In the past, this idea
was embraced broadly by mathematics educators. For
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instance, Wood, Cobb, and Yackel (1991; see also Cobb
& Bauersfeld, 1995) consider social interaction essen-
tial for mathematics learning, with individual knowl-
edge construction occurring throughout processes of
interaction, negotiation, and cooperation.

There is no doubt that the available literature pro-
vides substantial evidence supporting the positive ef-
fects of collaborative learning on the cognitive as well
as the social and affective outcomes of learning (see.
e.g.. Good, Mulryan, & McCaslin, 1992; Mevarech &
Light, 1992; Salomon, 1993a). In the cognitive domain,
the significance of interaction, collaboration, and com-
munication lies especially in their requiring insights,
strategies, and problem-solving methods to be made ex-
plicit. This not only supports conceptual understanding,
it also fosters the acquisition of heuristic strategies and
metacognitive skills. Therefore, a shift toward more so-
cial interaction and participation in mathematics class-
rooms would represent a worthwhile move away from
the traditional overemphasis on individual learning that
prevails, as shown in a study by Hamm and Perry
(2002). Studying the classroom discourse processes and
participatory structures in six first-grade classrooms,
they found that five out of the six teachers did not grant
any authority to their students and did not create a class-
room community in which students participated in
mathematical discourse and analysis; even the one
teacher who invited her students to take some responsi-
bility as members of a mathematical community still
mainly reinforced herself as the source of mathematical
authority rather than the classroom community. But one
should also avoid falling into the trap of the other ex-
treme. Indeed, stressing the importance for learning of
collaboration, interaction, and participation does not at
all deny that students can and do develop new knowl-
edge individually. As argued by Salomon (1993b), dis-
tributed and individual cognitions interact during
productive learning (see also Salomon & Perkins, 1998,
Sfard, 1998).

Summary

The preceding discussion shows that recent research
provides substantial evidence supporting the view that
productive mathematics learning is a constructive, pro-
gressively more self-regulated, and situated process
of knowledge building and skill acquisition involving
ample opportunities for interaction, negotiation, and
collaboration. Therefore, it seems self-evident that we

should take these basic characteristics of this concep-
tion of learning as major guidelines for the design of
curricula, textbooks, learning environments, and assess-
ment instruments that aim at fostering in students the
acquisition of a mathematical disposition as defined in
the previous section of this chapter.

But, notwithstanding this positive overall result of
past inquiry, numerous issues and problems have to be
addressed in future research. We stressed the need to
further unravel the nature of constructive learning
processes and the role of instructional interventions in
eliciting such processes. Continued research should also
aim at tracing the development in students of self-
regulatory skills, and at unpacking how and under what
instructional conditions students become progressively
more self-regulated learners. Similarly, it is necessary
to get a better understanding of how collaborative work
in small groups influences the learning and thinking of
students of different ages, of the role of individual dif-
ferences on group work, and of the processes that are at
work during group activities.

DESIGNING POWERFUL MATHEMATICS
LEARNING ENVIRONMENTS

The preceding sections elucidated the ultimate objec-
tive of mathematics education, developing a mathemati-
cal disposition, as well as major characteristics of
learning processes that can facilitate the acquisition of
the different components of such a disposition. All this
leads us to the important and challenging question relat-
ing to the intervention component of the CLIA model:
How can powerful mathematics learning environments
be designed for inducing in students the intended learn-
ing activities and processes, and by so doing, fostering
in them the progressive development and mastery of a
mathematical disposition?

Over the past 15 years, scholars in the domain of
mathematics education have been addressing this chal-
lenge mainly by using intervention studies, such as in
constructional research (Becker & Selter, 1996), and
design experiments (Cobb et al., 2003) or design-based
research (Sandoval & Bell, 2004b). Becker and Selter
define constructional research “as research that is con-
nected with suggestions on how teaching ought to be
or could be, to put it slightly more moderately. . . . [It is]
concentrating on the development of theoretically



founded and empirically tested practical suggestions for
teaching” (p. 525). According to Cobb et al.:

Design experiments entail both “engineering™ particular
forms of learning and systematically studying those forms
of learning within the context defined by the means of
supporting them. This designed context is subject to test
and revision, and the successive iterations that result play
a role similar to that of systematic variation in experi-
ments. (p. 9)

It is important to stress that this type of research intends
to advance theory building about learning from instruc-
tion, besides contributing to the innovation and improve-
ment of classroom practices (Cobb et al.,, 2003; De
Corte, 2000). In this respect, Sandoval and Bell (2004a,
pp. 199-200) characterize design-based research as
“theoretically framed, empirical research of learning
and teaching based on particular designs of instruction.”
From a theoretical perspective, then, a major task bears
on the development and validation of a coherent set of
guiding principles for the design of powerful mathemat-
ics learning environments.

Due to space restrictions, we can discuss only a very
small selection from the extensive number of projects
that have been or still are being carried out (see, e.g.,
Becker & Selter, 1996), focusing on primary education
and choosing examples that are in line with the con-
structivist perspective on learning discussed earlier.
Specifically, two studies are reviewed in some detail: a
learning environment for mathematical problem solving
in the upper primary school (Verschaffel et al., 1999)
and a program of classroom teaching experiments aim-
ing at better understanding the development of social
and sociomathematical norms in the lower grades of the
primary school (Cobb, 2000; Yackel & Cobb, 1996). Be-
sides the distinction in grade level and the geographical
spread over both sides of the Atlantic, the two examples
differ in two other respects. Whereas our intervention
focuses on word problem solving, the work of Cobb and
his coworkers relates to mental calculation with whole
numbers, thus representing two distinct aspects of math-
ematical competence. In addition, both studies contrast
and complement each other interestingly from a method-
ological perspective. The first one is a relatively well-
controlled investigation looking for treatment effects,
with some attention to differences between teachers in
implementing the intervention but providing little sense
of the processes that produce different outcomes;
Cobb’s investigations have a more longitudinal charac-
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ter and pay closer attention to the ongoing processes of
learning and teaching in the mathematics classroom.

A Learning Environment for Mathematical
Problem Solving in Upper Primary School Children

Parallel with the rethinking of the objectives and the na-
ture of mathematics education by researchers in the
field, initiatives have been implemented in many coun-
tries to reform and innovate classroom practices (see,
e.g., NCTM, 1989, 2000). This has also been the case in
the Flemish part of Belgium. Since the school year 1998
to 1999, new standards for primary education became
operational (Ministerie van de Vlaamse Gemeenschap,
1997). For mathematics education, these standards em-
body an important shift that is in line with the view of
mathematical competence as defined by de-emphasizing
the teaching and practicing of procedures and algo-
rithms, and instead stressing the importance of mathe-
matical reasoning and problem-solving skills and their
application to real-life situations and problems, as well
as the development of positive attitudes and beliefs to-
ward mathematics. To implement the new standards, the
Department of Education of the Flemish Ministry com-
missioned the present project from our center, aimed at
the design and evaluation of a powerful learning envi-
ronment that can elicit in upper primary school students
the constructive learning processes for acquiring the jn-
tended mathematical competence (for a more detailed
report, see Verschaffel et al., 1999).

Taking into account the literature discussed in the
previous sections, a set of five major guidelines for de-
signing a learning environment was derived from our
present understanding of a mathematical disposition
(the first component of the CLIA model) and the charac-
teristics of constructive learning processes (the second
CLIA component):

1. Learning environments should initiate and support
active, constructive acquisition processes in all
students, thus also in the more passive learners and
independent of socioeconomic status and/or ethnic
diversity. However, the view of learning as an active
process does not imply that students’ construction of
their knowledge cannot be guided and mediated by
appropriate interventions. Indeed, the claim that pro-
ductive learning involves good teaching still holds
true. In other words, a powerful learning environment



128 Mathematical Thinking and Learning

is characterized by a good balance between discovery
and personal exploration, on the one hand, and sys-
tematic instruction and guidance, on the other, al-
ways taking into account individual differences in
abilities, needs, and motivation among learners.

2. Learning environments should foster the development
of self-regulation strategies in students. This implies
that external regulation of knowledge and skill acqui-
sition through systematic instructional interventions
should be gradually removed so that students become
more and more agents of their own learning.

3. Because of the importance of context and collabora-
tion for effective learning, learning environments
should embed students’ constructive acquisition ac-
tivities in real-life situations that have personal
meaning for the learners, that offer ample opportuni-
ties for distributed learning through social inter-
action, and that are representative of the tasks and
problems to which students will have to apply their
knowledge and skills in the future.

4. Because domain-specific knowledge, heuristic meth-
ods. metaknowledge, self-regulatory skills, and beliefs
play complementary roles in competent learning,
thinking, and problem solving, learning environments
should create opportunities to acquire general learn-
ing and thinking skills embedded in the mathematics
content.

5. Powerful learning environments should create a
classroom climate and culture that encourages stu-
dents to explain and reflect on their learning activi-
ties and problem-solving strategies. Indeed, fostering
self-regulatory skills requires that students become
aware of strategies, believe that they are worthwhile
and useful, and finally master and control their use
(Dembo & Eaton, 1997).

Aims of the Learning Environment

The aims of our learning environment were twofold. The
first aim was the acquisition of an overall cognitive self-
regulatory strategy for solving mathematics application
problems. This consisted of five stages and involved a
set of eight heuristic strategies that are especially use-
ful in the first two stages of that strategy (see Table
4.1). Acquiring this strategy involves (a) becoming
aware of the different phases of a competent problem-
solving process (awareness training); (b) being able to
monitor and evaluate one’s actions during the different
phases of the solution process (self-regulation training);
and (¢) gaining mastery of the eight heuristic strategies

Table 4.1 The Competent Problem-Solving Model Underlying
the Learning Environment

Step t: Build a Mental Representation of the Problem
Heuristics: Draw a picture.
Make a list, a scheme, or a table.
Distinguish relevant from irrelevant data.
Use your real-world knowledge.
Step 2: Decide How to Solve the Problem
Heuristics: Make a flowchart.
Guess and check.
Look for a pattern.
Simplify the numbers.
Step 3: Execute the Necessary Calculations
Step 4: Interpret the Outcome and Formulate an Answer

Step 5: Evaluate the Solution

(heuristic strategy training). The five stages of this
strategy for cognitive self-regulation parallel the mod-
els proposed by Schoenfeld (1985) and Lester, Garofalo,
and Kroll (1989).

The second aim was the acquisition of a set of appro-
priate beliefs and positive attitudes with regard to mathe-
matics learning and problem solving (e.g., “Mathematics
problems may have more than one correct answer’;
“Solving a mathematics problem may be effortful and
take more than just a few minutes”).

Major Characteristics and Organization of the
Learning Environment

The five design principles were applied in an inte-
grated way in the learning environment. This resulted
in an intervention characterized by the following three
basic features:

1. A varied set of complex, realistic, and challenging
word problems. These problems differed substantially
from the traditional textbook problems and were care-
fully designed to elicit the application of the intended
heuristics and self-regulatory skills that constitute the
model of skilled problem solving. The example that fol-
lows illustrates the type of problems used in the learning
environment:

School Trip Problem*

The teacher told the children about a plan for a school
trip to visit the Efteling, a well-known amusement park

*The problem is not presented in its original format because
it takes a lot of space. Moreover, translating it from Flemish
to English is somewhat cumbersome.



in the Netherlands. But if that would turn out to be too
expensive, one of the other amusement parks might be
an alternative.

Each group of four students received copies of fold-
ers with entrance prices for the different parks. The lists
mentioned distinct prices depending on the period of the
year, the age of the visitors, and the kind of party (indi-
viduals, families, groups).

In addition, each group received a copy of a fax from
a local bus company addressed to the principal of the
school. The fax gave information about the prices for
buses of different sizes (with a driver) for a 1-day trip to
the Efteling.

The first task of the groups was to determine whether
it was possible to make the school trip to the Efteling
given that the maximum price per child was limited to
12.50 euro.

After finding out that this was not possible, the groups
received a second task: They had to find out which of the
other parks could be visited for the maximum amount of
12.50 euro per child.

2. A series of lesson plans based on a variety of acti-
vating and interactive instructional techniques. The
teacher initially modeled each new component of the
metacognitive strategy; a lesson consisted of a sequence
of small-group problem-solving activities or individual
assignments, always followed by a whole-class discussion.
During all these activities, the teacher’s role was to en-
courage and scaffold students to engage in and to reflect
on the kinds of cognitive and metacognitive activities in-
volved in the model of competent mathematical problem
solving. These encouragements and scaffolds were gradu-
ally withdrawn as the students became more competent
and took more responsibility for their own learning and
problem solving. In other words, external regulation was
faded out as students became more self-regulated learn-
ers and problem solvers.

3. Interventions explicitly aimed at the establishment
of new social and sociomathematical norms. A classroom
climate was created that is conducive to the development
in students of appropriate beliefs about mathematics and
mathematics learning and teaching and to students’ self-
regulation of their learning. Social norms are general
norms that apply to any subject matter domain and relate,
for instance, to the role of the teacher and the students in
the classroom (e.g., not the teacher alone, but the whole
class will decide which of the different learner-generated
solutions is the optimal one after an evaluation of the
pros and cons of the distinct alternatives). Sociomathe-
matical norms, on the other hand, are specific to stu-
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dents’ activity in mathematics, such as what counts as a
good mathematical problem, a good solution procedure,
or a good response (e.g., sometimes a rough estimate is a
better answer to a problem than an exact number; Yackel
& Cobb, 1996).

The learning environment consisted of a series of 20
lessons designed by the research team in consultation
and cooperation with the regular class teachers, who
themselves did the teaching. With two lesson periods
each week, the intervention was spread over about 3
months. Three major parts can be distinguished in the
series of lessons:

1. Introduction to the content and organization of the
learning environment and reflection on the difference
between a routine task and a real problem (1 lesson).

2. Systematic acquisition of the five-step regulatory
problem-solving strategy and the embedded heuris-
tics (15 lessons).

»

Learning to use the competent problem-solving model
in a spontaneous, integrated. and flexible way in so-
called project lessons involving more complex appli-
cation problems (4 lessons). The School Trip Problem
is an example of such a lesson.

Teacher Support and Development

Because the class teachers taught the lessons, they were
prepared for and supported in implementing the learning
environment. The model of teacher development adopted
reflected our views about students’ learning by empha-
sizing the creation of a social context wherein teachers
and researchers learn from each other through continu-
ous discussion and reflection on the basic principles of
the learning environment, the learning materials devel-
oped, and the teachers’ practices during the lessons (De
Corte, 2000). Moreover, taking into account that the
mathematics teaching-learning process is too complex to
be prespecified and that teaching as problem solving is
mediated by teachers’ thinking and decision making, the
focus of teacher development and support was not on
making them perform in a specific way, but on prepar-
ing and equipping them to make informed decisions (see
also Carpenter & Fennema, 1992; Yackel & Cobb,
1996). Taking this into account, the teachers received
the following support materials to enhance a reliable and
powerful implementation of the learning environment:
(a) a general teaching guide containing an extensive
description of the aims, content, and structure of
the learning environment; (b) a list of 10 guidelines
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comprising actions that they should take before, during,
and after the individual or group assignments, comple-
mented with worked-out examples ot each guideline (see
Table 4.2); (¢) a specific teacher guide for each lesson,
containing the overall lesson plan but also specific sug-
gestions for appropriate teacher interventions and exam-
ples of anticipated correct and incorrect solutions and
solution methods; and (d) all the necessary concrete ma-
terials for the students.

Procedure and Hypotheses

The effectiveness of the learning environment was
evaluated in a study with a pretest-posttest-retention
test design. Four experimental fifth-grade classes (11-
year-olds) and seven comparable control classes from
11 different elementary schools in Flanders partici-
pated in the study. These seven classes were compara-
ble to the experimental classes in terms of ability and
socioeconomic status, and during the 4-month period
they followed an equal number of lessons in word prob-
lem solving. Interviews with the teachers of these
classes and analyses of the textbooks used provided us
with a good overall view of what happened in those
control classes. This indicated that the teaching with
respect to word problem solving was representative of
current instructional practice in Flemish elementary
schools (see De Corte & Verschaffel, 1989).

Table 4.2 General Guidelines for the Teachers Before,
During, and After the Group and Individual Assignments

Before
. Relate the new aspect (heuristic, problem-solving step) to what
has already been learned before.
2. Provide a good orientation to the new task.

During

3. Observe the group work and provide appropriate hints when
needed.
4. Stimulate articulation and reflection.
5. Stimulate the active thinking and cooperation of all group
members (especially the weaker ones).
After
6. Demonstrate the existence of different appropriate solutions
and solution methods for the same problem.
7. Avoid imposing solutions and solution methods onto students.
8. Pay attention to the intended heuristics and metacognitive
skills of the competent problem-solving model, and use this
model as a basis for the discussion.
9. Stimulate as many students as possible to engage in and
contribute to the whole-class discussion.
10. Address (positive as well as negative) aspects of the group
dynamics.

Three pretests were collectively administered in the
experimental as well as the control classes: a standard-
ized achievement test (SAT) to assess fifth graders’ gen-
eral mathematical knowledge and skills, a word problem
test (WPT) consisting of 10 nonroutine word problems,
and a beliefs attitude questionnaire (BAQ) aimed at
assessing students’ beliefs about and attitudes toward
(teaching and learning) word problem solving. In addi-
tion, students’ WPT answer sheets for each problem
were carefully scrutinized for evidence of the applica-
tion of one or more of the heuristics embedded in
the problem-solving strategy. Besides these collective
pretests, three pairs of students of equal ability from
each experimental class were asked to solve five nonrou-
tine application problems during a structured interview.
The problem-solving processes of these dyads were
videotaped and analyzed by means of a self-made
schema for assessing the intensity and the quality of stu-
dents’ cognitive self-regulation activities.

By the end of the intervention. parallel versions of all
collective pretests (SAT, WPT, and BAQ) were adminis-
tered in all experimental and control classes. The answer
sheets of all students were again scrutinized for traces
of the application of heuristics, and the same pairs of
students from the experimental classes as prior to the in-
tervention were subjected again to a structured inter-
view involving parallel versions of the five nonroutine
application problems used during the pretest. Three
months later, a retention test (a parallel version of the
collective WPT used as pretest and posttest) was also
administered in all experimental and control classes. To
assess the implementation of the learning environment
by the teachers of the experimental classes, a sample of
four representative lessons was videotaped in each ex-
perimental class and analyzed afterward for an “imple-
mentation profile” for each experimental teacher.

A major hypothesis was that as a result of acquiring
the self-regulatory problem-solving strategy, the experi-
mental students would significantly outperform the
control children on the WPT, and that this would be ac-
companied by a significant increase in the use ot heuris-
tics. Furthermore, it was anticipated that the frequency
and the quality of the self-regulation activities in the
dyads would substantially grow.

Results

We summarize here the major results of this inter-
vention study. Although no significant difference was
found between the experimental and control groups on
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the WPT during the pretest, the former significantly
outperformed the latter during the posttest, and this dif-
ference in favor of the experimental group was main-
tained in the retention test. However, it should be
acknowledged that in the experimental group, students’
overall performance on the posttest and retention tests
was not as high as anticipated (i.e.. the students of the
experimental classes still produced only about 50% cor-
rect answers on these tests). In the experimental group,
there was a significant improvement in students’ beliefs
about and attitudes toward learning and teaching mathe-
matical problem solving. whereas in the control group
there was no change in students’ reactions to the BAQ
from pretest to posttest. Although there was no differ-
ence in the pretest results on the SAT between the ex-
perimental and the control group, the results on the
posttest revealed a significant difference in favor of the
former group, indicating some transfer effect of the in-
tervention toward mathematics as a whole. A qualitative
analysis of the students’ response sheets of the WPT re-
vealed a dramatic increase from pretest to posttest
and retention test in the manifest use of some of
the heuristics that were specifically addressed and dis-
cussed in the learning environment: in the control
classes, there was no difference in students’ use of
heuristics between the three testing times. In line with
this result, the videotapes of the problem-solving
processes of the dyads revealed substantial improvement
in the intensity and quality with which the pairs from
the experimental classes applied certain—but not all —
{meta)cognitive skills that were specifically addressed
in the learning environment. Both findings are indicative
of a substantial increase in students’ ability to self-
regulate  their problem-solving processes. Although
there is some evidence that students of high and medium
ability benefited more from the intervention than low-
ability students, the statistical analysis revealed at the
same time that all three ability groups contributed sig-
nificantly to all the positive effects in the experimental
group. This is a very important outcome, because it sug-
pests that through appropriate intervention, one can also
improve the cognitive self-regulatory skills of the
weaker children. Finally, the positive effects of the
lcarning environment were not observed to the same ex-
tent in all four experimental classes; actually. in one of
the four classes. there was little or no improvement on
most of the process and product measures. Analysis of
the videotapes of the lessons in these classes indicated
substantial differences in the extent to which the four
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experimental teachers succeeded in implementing the
major aspects of the learning environment. For three of
the four experimental classes. there was a good fit be-
tween the teachers’ implementation profiles and their
students’ learning outcomes.

Strengthening the Learning Environment with a
Technology Component

The results of the previous study encouraged us to com-
bine in a subsequent investigation the theoretical ideas
and principles relating to socioconstructivist mathemat-
ics learning and to teachers’ professional development
with a second strand of theory and research focusing
on the (meta)cognitive aspects of computer-supported
collaborative knowledge construction and skill building
(De Corte, Verschaffel, Lowyck, Dhert, & Vandeput,
2002). Taking into account the available empirical
evidence showing that computer-supported collaborative
learning (CSCL)} is a promising lever for the improvement
of learning and instruction ( Lehtinen, Hakkarainen. Lip-
ponen, Rahikainen, & Muukkonen, 1999), we enriched
the learning environment designed in the previous study
with a CSCL component. We chose Knowledge Forum
(KF), a software tool for constructing and storing notes,
for sharing notes and exchanging comments on them. and
for scaffolding students in their acquisition of specific
cognitive operations and particular concepts (Scar-
damalia & Bereiter, 1998). As in the preceding study.
students solved the problems in small groups; afterward.
they exchanged their solutions through KF and could
comment on each other’s solutions before a whole-class
discussion was held. In the last stage of this study, the
small groups generated problems themselves, which were
also exchanged through KF: each group solved at least
one problem posed by another group and sent its solution
to that group for comments.

The learning environment was implemented in two
fifth-grade and two sixth-grade classes of a Flemish pri-
mary school over a period of 17 weeks (2 hours per
week). Although this study was less well-controlled than
the previous one (e.g., there was no control group), the
findings point in the same direction, showing that it is
possible to create a high-powered computer-supported
learning community for teaching and learning mathe-
matical problem solving in the upper primary school. Of
special importance is that the teachers were very enthu-
siastic about their participation and involvement in the
investigation. Their positive appreciation related to the
approach to the teaching of problem solving as well as
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the use of KF as a supporting tool for learning; for in-
stance, they reported several positive developments ob-
served in their students, such as a more mindful and
reflective approach to word problems. The learning en-
vironment was also enthusiastically received by most of
the students. At the end of the intervention, they ex-
pressed that they liked this way of doing word problems
much more than the traditional approach. Many of the
children also reported learning something new, both
about information technology and about mathematical
problem solving.

Summary

By combining in these intervention studies a set of care-
fully designed word problems, a variety of activating
and interactive teaching methods (strengthened by a
technology component in the second one), and the adop-
tion of new social and sociomathematical classroom
norms, a learning environment was created that aimed at
the development in students of a mindful and self-
regulated approach toward mathematical problem solv-
ing. In terms of the components of a mathematical
disposition, the learning environment focused selec-
tively on heuristic methods, cognitive self-regulation
skills, and, albeit rather implicitly, positive beliefs
about learning mathematics problem solving. As antici-
pated, the results show that the intervention had signifi-
cant positive effects on students’ performance in
problem solving, their use of heuristic strategies, and
their cognitive self-regulation. Moreover, in the first
study, the learning environment also had a favorable in-
fluence, albeit to a lesser extent, on their beliefs about
learning and teaching mathematics. Taking into account
the rather short period of the intervention, this last re-
sult is not at all surprising; indeed, beliefs and attitudes
do not change overnight. However, a recent study in Italy
by Mason and Scrivani (2004) in which a learning envi-
ronment was designed and implemented with a more ex-
plicit focus on fostering students’ beliefs obtained
similar good results as our study, but the outcomes were
especially positive with respect to the development of
students’ mathematics-related beliefs.

Notwithstanding the positive outcomes of these stud-
ies, some critical comments need to be made that point
at issues for continued research (for a more detailed dis-
cussion, see Verschaffel et al., 1999). First of all, due to
the quasi-experimental design of the studies, the com-
plexity of the learning environment, and the small
experimental group, it is not possible to establish-the rel-

ative importance of the distinct components of the inter-
vention in producing its positive effects; in fact, it is
plausible that it is the combination of the different as-
pects of the design, the content, and the implementation
of the learning environment that is responsible for those
effects. From a methodological perspective, this is often
considered a weakness of teaching experiments, criti-
cized for their lack of randomization and control (see,
e.g.. Levin & O’Donnell, 1999). To overcome this criti-
cism and make a stronger contribution to theory build-
ing, one could conduct randomized classroom trial
studies (Levin & O’Donnell, 1999) involving larger
numbers of experimental classes, in which different ver-
sions of complex learning environments are systemati-
cally contrasted and compared in terms of identification
and differentiation of the aspects that contribute espe-
cially to their power and success. However, as argued by
Slavin (2002, p. 17), one should be aware of “the fact
that randomized experiments of interventions applying
to entire classrooms can be extremely difficult and ex-
pensive to do and are sometimes impossible.”

Furthermore, some problematic aspects of the learn-
ing environment designed and implemented in these
studies may explain why no stronger effects were
achieved; they point to suggestions for further inquiry.
First, the components of the model of competent prob-
lem solving might be reformulated in terms that are
more understandable and accessible to children, and that
at the same time better reflect the cyclical nature of a
solution process. Second, the third basic pillar of the
learning environment, the establishment of a new class-
room climate through the introduction of new social and
sociomathematical norms, was not implemented in this
study in a sufficiently systematic and effective way. Be-
sides the short duration of the intervention, this may
also explain the rather weak impact of the intervention
on students” attitudes and beliefs. Third, with respect to
the instructjonal techniques, an issue that needs to be
further addressed is how to organize and support small-
group work so that all students—including the shy and
low-ability ones— participate and collaborate in a task-
oriented way.

Finally, although the observed outcomes are promis-
ing, we should realize that in several respects we are
still far removed from the intended large-scale imple-
mentation in educational practice of the underlying con-
ception of mathematics learning and teaching. First, the
intervention was restricted to only a part of the mathe-
matics curriculum, namely, word problem solving: for a



sustained innovation, the whole mathematics curricu-
lum, and even the entire school program, should be mod-
eled after the socioconstructivist perspective on
learning environments (see also Cognition and Technol-
ogy Group at Vanderbilt, 1996). Second, the studies
have shown that practicing a learning environment such
as the ones designed in our project is very demanding
and requires drastic changes in the role of the teacher.
Instead of being the main, if not the only source of infor-
mation, as is often still the case in average educational
practice, the teacher becomes a “privileged” member of
the knowledge-building community who creates an in-
tellectually stimulating climate, models learning and
problem-solving activities, asks thought-provoking ques-
tions, provides support to learners through coaching and
guidance, and fosters students’ agency in and responsi-
bility for their own learning. Broadly scaling up this
new perspective on mathematics learning and teaching
into educational practice is not a minor challenge. In-
deed, it is not just a matter of acquiring a set of new in-
structional techniques, but calls for a fundamental and
profound change in teachers’ beliefs, attitudes, and men-
tality and, therefore, requires intensive professional de-
velopment and cooperation with in-service mathematics
teachers (see also Cognition and Technology Group at
Vanderbilt, 1997; Gearhart et al., 1999).

Developing Social and Sociomathematical Norms

In the previous subsection, we remarked that in our in-
tervention study, one characteristic of the learning envi-
ronment was not very well implemented, namely, the
establishment of new social and sociomathematical
norms. It is plausible that this flaw in the actualization
of the learning environment accounts to a large extent for
the poor effects on students’ mathematics-related be-
liefs. The work of Cobb and his colleagues (Cobb, 2000;
Cobb, Gravemeijer, Yackel, McClain, & Whitenack,
1997; Cobb, Yackel, & Wood, 1989; McClain & Cobb,
2001; Yackel & Cobb, 1996) over the past 15 years has
focused on conducting design experiments in the lower
grades of the primary school that explicitly aimed at de-
veloping novel social and sociomathematical norms that
can enhance students’ mathematics-related beliefs.

The theoretical stance of Cobb’s work, called the
emergent view, conceives of “mathematical learning as
both a process of active individual construction and a
process of enculturation” (Cobb et al., 1997, p. 152). By
stressing the individual as well as the social aspects of
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learning, this view is closely related to our sociocon-
structivist perspective.

The methodological approach used by Cobb (2000) is
the classroom teaching experiment, an extension to the
level of the classroom of the constructivist teaching ex-
periment in which the researcher himself or herself acts
as teacher interacting with students either one-on-one or
in small groups. The aim of the classroom teaching ex-
periment, or design experiment, is to study students’
mathematics learning in alternative learning environ-
ments designed in collaboration with teachers. By so
doing, this design can reveal “the implications of reform
as they play out in interactions between teachers and
students in classrooms” (p. 333).

Social and Sociomathematical Norms, and Beliefs
as Their Correlates

The rather subtle distinction between social norms and
sociomathematical norms, referred to in the previous
subsection, can be clarified through some examples. The
expectation that students explain their solution strate-
gies and procedures is a social norm, whereas being able
to recognize what counts as an acceptable mathematical
explanation is a sociomathematical norm. Similarly, the
rule that when discussing a problem one should come up
with solutions that differ from those already presented
Is a social norm; knowing and understanding what con-
stitutes mathematical difference (see later discussion)
is a sociomathematical norm. Stated more generally,
social norms apply to any subject matter domain of the
curriculum; sociomathematical norms are domain-
specific in the sense that they bear on normative aspects
of students’ mathematical activities and discussions
(Yackel & Cobb, 1996).

Social and sociomathematical norms constitute the
key constructs of the following interpretive framework
put forward by Cobb (2000; see also Cobb et al., 1997)
for analyzing the classroom microculture. According to
Cobb and his colleagues, this framework represents both
reflexive perspectives of the emergent view. The social
perspective refers to interactive and collective classroom
activities; the psychological perspective focuses on indi-
vidual students’ activities during and contributions to
the collective classroom practices resulting in beliefs:
beliefs about one’s own role as a learner, about the role
of the teacher and one’s colearners, and about the gen-
eral nature of the mathematical activity as correlates of
the social norms; and mathematical beliefs and values as
correlates of the sociomathematical norms. As Table 4.3



134 Mathematical Thinking and Learning

Table 4.3 An Interpretive Framework for Analyzing
Individual and Collective Activity at the Classroom Level

Social Perspective Psychological Perspective

Classroom soctal norms Beliefs about our own role, others’
roles, and the general nature of
mathematical activity
Sociomathematical norms  Specifically mathematical beliefs and
vilues

Classroom mathematical

practices

Mathematical conceptions and activity

Source: From “Mathematizing and Symbolizing: The Emergence of
Chains of Signification in One First-Grade Classroom” (pp. 151-233),
by P. Cobb. K. Gravemeijer, E. Yackel, K. McClain. and J. Whitenack,
in Situated Cognition: Social, Semiotic, and Psychological Perspec-
rives, D. Kirshner and J. Whitson (Eds.), 1997, Mahwah, NJ: Erl-
baum. Reprinted with permission.

shows, the social component of the framework involves a
third aspect, classroom mathematical practices, which
refers to taken-as-shared mathematical practices estab-
lished by the classroom community. Cobb (2000, p. 324;
see also Cobb et al., 1997) gives the following example:

In the second-grade classrooms in which my colleagues
and T have worked, various solution methods that involve
counting by ones are established mathematical practices at
the beginning of the school year. Some of the students are
also able to develop solutions that involve the conceptual
creation of units of 10 and 1. However, when they do so.
they are obliged to explain and justify their interpretations
of number words and numerals. Later in the school year,
solutions based on such interpretations are taken as self-
evident by the classroom community. The activity of inter-
preting number words and numerals in this way has
become an established mathematical practice that no
longer stands in need of justification. From the students’
point of view, numbers simply are composed of 10s and
Is—it is a mathematical truth.

As is shown in the “Psychological Perspective” column
of Table 4.3, the mathematical interpretations, concep-
tions, and activities of individual students are considered
the psychological correlates of those classroom prac-
tices; their relationship is also conceived as reflexive.

Research Method

The interpretive framework was used over the past years
in a number of teaching experiments in lower primary
classrooms (first, second, and third grades) in which at-
tempts were made to help and support teachers in radi-
cally changing their mathematics teaching practices.
This implies that the researchers are present in the class-
room during all the lessons of the experiment. Also, the

participating teachers become members of the research
and development team. The duration of the experiments
can vary from just a few weeks to an entire school year.

A variety of data are collected throughout the experi-
ments. Video recordings of the lessons are made using
two cameras, one focused mainly on the teacher, but
sometimes on individual children who explain their rea-
soning and problem solving: the other camera tapes stu-
dents while they are involved in discussions about a
math task. Other data sources are copies of students’
written work, field notes relating to the daily lessons,
reports of the daily and weekly planning and debriefing
sessions of the researchers together with the teacher, the
teacher’s diary, and videotapes of individual interviews
with students. The method used to analyze those data is
in line with the constant comparison method of B. G.
Glaser and Strauss (1967) as applied in ethnographic
studies. It consists of the cyclic comparison of data
against conjectures derived from the preceding analysis:
Issues that arise from watching the video recordings of a
lesson are documented and clarified through a process
of conjecture and refutation, and the trustworthiness of
the final outcome can be checked against the original
data tapes (McClain & Cobb, 2001; for a more detailed
account, see Cobb & Whitenack, 1996).

Illustrative Results

Classroom teaching experiments were usually carried
out with teachers who followed an inquiry approach to
teaching and learning. The instructional tasks and prob-
lems, as well as the instructional strategies, are pre-
pared and planned in collaboration and consultation
with the teacher. The instructional strategies are very
much in accordance with those applied in our own inter-
vention study: whole-class discussions of problems led
by the teacher and collaborative small-group work
followed by whole-class discussions in which students
explicate, argue for, and justify their strategies and solu-
tions elaborated during the small-group activities.

The illustration of the development of social norms
described later is taken from a study in a second-grade
classroom. In the beginning of the school year, the
teacher quickly realized that the students did not meet
his expectation that they would easily explain for the
whole class how they had approached and solved tasks
and problems. Apparently, this expectation contradicted
their belief acquired during the previous school year, in
the first grade. that the only source of the right solution
method and the correct answer is the teacher. To deal



with these conflicting expectations, the teacher started
using a procedure called the renegotiation of classroom
social norms. As a result, different social norms relating
to whole-class discussion were overtly considered, nego-
tiated, and thus socially constructed through interaction
in the classroom. Examples are explaining and justifying
solutions, trying to understand others’ explanations, ex-
pressing agreement and disagreement, and questioning
alternatives when conflicting interpretations and solu-
tions are put forward (Cobb et al., 1989). Their contri-
butions to the social construction of the classroom
social norms in the renegotiation process initiates in stu-
dents developments and changes in their beliefs about
their role and the role of the teacher and their fellow stu-
dents in the mathematics classroom. and about the na-
ture of mathematics. Therefore, these beliefs are
considered the psychological correlates of the classroom
social norms.

Whereas Cobb and his colleagues initially focused on
general social norms in elaborating a social perspective
on classroom activities, in the mid-1990s this was com-
plemented by a growing attention to domain-specific
norms that permeate and regulate classroom discourse,
that is, norms that are specific to activities and inter-
actions in the mathematics classroom ( Yackel & Cobb,
1996, see also Voigt, 1995). Examples of such so-
ciomathematical norms are what counts as a different
mathematical solution. a sophisticated solution, an in-
sightful solution, an elegant solution, an efficient solu-
tion, and an acceptable solution.

The mathematical difference norm and its signifi-
cance was first identified in inquiry-oriented class-
rooms where teachers regularly solicited students to
offer a different approach or solution to a task, and re-
jected some reactions as not being mathematically dif-
ferent. It was obvious that the students had no idea what
a mathematically different answer could be, but became
aware of it during interactions in the course of which
some of their contributions were accepted and others
rejected. It was thus through their reactions to the
teacher’s invitation to offer different solutions that stu-
dents learned what mathematical difference means and
also contributed to install and define the mathematical
difference norm in their classroom. This shows that, as
is the case for social norms, sociomathematical norms
also emerge and are socially constructed through negoti-
ation between teacher and students.

The following episode of a lesson in a second-grade
classroom shows how a teacher initiates the interactive
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development of a mathematically different solution
{Yackel & Cobb, 1996, pp. 462—-463):

The number sentence 16 + 14 + 8 = has
been posed as a mental computation activity.

Lemont: 1 added the two Is out of the 16 and [the
14] ... would be 20 ... plus 6 plus 4 would equal
another 10, and that was 30 plus 8 left would be 38.

Teacher: All right. Did anyone add a little differ-
ent? Yes?
Ella: [ said 16 plus 14 would be 30 ... and add 8

more would be 38.

Teacher: Okay! Jose? Different?

Jose: I took two 10s from the 14 and the 16 and
that would be 20 . . . and the I added the 6 and the
4 that would be 30...then I added the 8, that
would be 38.

Teacher: Okay! It’s almost similar to— (addressing
another student) Yes? Different? All right.

Here, the teacher’s response to Jose suggests that he is
working out for himself the meaning of differenr. How-
ever, because he does not elaborate for the students how
Jose’s solution is similar to those already given, the stu-
dents are left to develop their own interpretations. The
next two solutions offered by students are more inven-
tive and are not questioned by the teacher.

Rodney: I took one off the 6 and put it on the 14
and ! had ... 15 [and] 15 [would be] 30, and [ had
8 would be 38.

Teacher: Yeah! Thirty-eight. Yes. Different?

Tonya: I added the 8 and the 4, that was 12. ... So
I said 12 plus 10, that would equal 22 . . . plus the
other 10, that would be 32 —and then I had 38.

Teacher: Okay! Dennis—different, Dennis?

Throughout such interactions the students progressively
learned the meaning of mathematical difference as they
observed that their teacher accepted solutions that con-
sist of decomposing and recomposing numbers in a vari-
ety of ways but rejected responses that only more or less
repeat solutions already presented. The episode demon-
strates clearly how normative aspects of mathematical
activity emerge and are constituted during classroom
discourse. Correlatively with the installation of those
sociomathematical norms, students develop at the indi-
vidual level mathematics-related beljefs and values that
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enable them to become progressively more self-
regulated in doing mathematics.

The initial work on sociomathematical norms from
which the preceding episode is taken (Yackel & Cobb,
1996) documents through a post hoc analysis how such
normative aspects of mathematical activity emerge. In a
more recent classroom teaching experiment, more ex-
plicit attempts were undertaken, in collaboration between
a teacher and the research team, to proactively foster
the establishment of certain sociomathematical norms,
thus simultaneously enhancing children’s mathematics-
related beliefs. In addition, this work focused on tracing
the emergence of one sociomathematical norm from an-
other throughout the classroom discourse.

Based on video data of lessons during the first 4
months of a school year, McClain and Cobb (2001)
showed what first-grade teachers could do to evoke and
sustain the development of sociomathematical norms at
the classroom level and mathematics-related beliefs in
individual children that are in line with the mathemati-
cal disposition advocated in current reform documents.
One task given to the children was to figure out how
many chips were shown on an overhead projector on
which an arrangement of, for instance, five or seven
chips was displayed. The objective was to elicit reason-
ing about the task and initiate a shift in students from
using counting to find the answer to more sophisticated
strategies based on grouping of chips. The results show
how the mathematical difference norm developed in the
classroom through discussions and interactions focused
on the task, but later evolved into a renegotiation of the
norm of a sophisticated solution. Indeed, solutions based
on grouping of chips were seen not only as different
from, but also as more sophisticated than counting. Sim-
ilarly, from the mathematical difference norm emerged
the norm of what counts as an easy, simple or efficient
way to solve a problem: Some of the solutions that were
accepted as being different were also considered easy or
efficient, but others not. In the same way as in the previ-
ous study, students’ individual beliefs about mathemat-
ics and mathematics learning were influenced in parallel
with the emergence of the sociomathematical norms,
and this contributed to their acquisition of a mathemati-
cal disposition.

Summary

Conducting classroom teaching experiments in collabo-
ration with teachers as an overall research strategy, and
using the interpretive framework discussed here for the

in-depth qualitative analyses of video recordings of les-
sons (complemented with field notes and interview data),
Cobb and his colleagues have shown how social and so-
ciomathematical norms in the microculture of lower pri-
mary grades’ mathematics classrooms emerge, evolve,
and further develop throughout interactions between
teacher and students, and also how these norms then reg-
ulate continued classroom discourse and contribute to
the creation of learning opportunities for students and
teacher. Besides this theoretical orientation, the work
has a major pragmatic goal, namely, understanding and
designing, in close collaboration with teachers, class-
room learning environments that are in accordance with
the basic tenets of current reform documents.

According to Cobb (2000, p. 327), the methodologi-
cal issue of generalizability is of utmost importance, but
the notion is not used here in the traditional sense that
ignores specific features of the particular cases of the
set to which a proposition generalizes: “Instead, the the-
oretical analysis developed when coming to understand
one case is deemed to be relevant when interpreting
other cases. Thus, what is generalized is a way of inter-
preting and acting that preserves the specific character-
istics of individual cases.”

-Cobb (2000) concedes that the classroom teaching
experiment that focuses on problems and reform issues
at the classroom level is not the panacea that fits all re-
search questions and problems. Due to the focus on the
classroom as a community of learners, this type of
experiment is less appropriate for investigating and
documenting mathematical learning and thinking of in-
dividual students. For the same reason, the classroom
teaching experiment is not well suited for studying re-
form issues that relate to the broader context of the
school and the community, for which different ap-
proaches, such as ethnographic methods, are more
strongly indicated.

Referring to the first limitation signaled by Cobb
(2000), and taking into account the available publica-
tions, it seems to us that indeed this work falls short
of operationalizing the psychological perspective of the
interpretive framework. A major point in this respect
relates to the claim that correlatively with the establish-
ment of new social and sociomathematical norms
embedded in the classroom practices, the mathematics-
related beliefs of individual students develop. However,
those beliefs are not at all operationalized and assessed
in the reports of the experiments, although it might not
be too difficult to do so.
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As already remarked with regard to the previous in-
tervention study, the second restriction of this class-
room teaching experiment also raises concern about the
crucial issue of upscaling promising practices that are in
line with the intended reform of math education. Still,
the two intervention projects support in different ways
the viewpoint that it is possible to create and implement
novel learning environments that induce in children
learning processes that facilitate the acquisition of im-
portant components of mathematical competence as de-
scribed in the beginning of this chapter.

Other projects in which innovative instructional in-
terventions have been designed. based on similar prin-
ciples, have reported converging findings. We mention
here only two examples, again geographically spread
over both sides of the Atlantic. In the so-called Jasper
Project, learning of mathematical problem solving in
the upper primary school is anchored in meaningful
and challenging environments (Cognition and Technol-
ogy Group at Vanderbilt, 1997, 2000). Although this
project resembles our own intervention study in terms
of grade level and mathematical focus, it goes far be-
yond it in several respects. First, anchored instruction
of mathematical problem solving has been studied
more intensively and over a longer period of time. Sec-
ond, it involves a strong technological component,
using videodisc technology to present problems. Third,
efforts have been undertaken toward a more large-scale
implementation of anchored instruction.

The second example, referred to earlier, is Realistic
Mathematics Education (RME), which was initiated by
Freudenthal and developed in the Netherlands in the
1970s. Underlying this approach to mathematics educa-
tion is Freudenthal’s (1983) didactic phenomenology,
which involves a reaction against the traditional idea
that students should first acquire the formal system of
mathematics, with applications to come afterward. Ac-
cording to Freudenthal, this is contrary to the way math-
ematical knowledge has been gathered and developed,
that is, starting from the study of phenomena in the real
world. We refer readers to Treffers (1987), Streefland
(1991), and Gravemeijer (1994) for more detailed infor-
mation about the basic ideas of RME, as well as for ex-
amples of design experiments wherein these ideas have
heen successfully implemented and tested with respect
to different aspects of the elementary school curricu-
lum. Interesting to mention here is that in a l-year
RME-based intervention study relating to mental calcu-
lation with numbers up to 100, Menne (2001) found not

only that second graders at the end of the school year
achieved one or more mastery levels higher than at the
beginning of the school year, but also that this remark-
able progression applied particularly to the weaker stu-
dents, who mainly belonged to the group of children
from non-Dutch backgrounds.

ASSESSMENT: A TOOL FOR MONITORING
LEARNING AND TEACHING

The assessment component of the CLIA model is
concerned with the design, construction, and use of in-
struments for determining how powerful learning envi-
ronments are in facilitating in students the acquisition
of the different aspects of a mathematical disposition.
This implies that those instruments should be aligned
with this view of the ultimate goal of mathematics edu-
cation and with the nature of mathematics learning as
discussed earlier.

Assessments of mathematics learning can either be
internal or external. Internal assessments are organized
by the teacher in the classroom, formally or more infor-
mally; external, usually large-scale assessments come
from outside, organized at the district, state, national,
or even international level using standardized tests or
surveys (NRC, 2001a; Silver & Kenney, 1995). As ar-
cued by the NRC (2001b), assessments in both the class-
room and a large-scale context can be set up for three
broad purposes: to assist learning and teaching, to mea-
sure achievement of individual students, and to evaluate
school programs. Stated somewhat differently, Webb
(1992) has distinguished the following purposes of as-
sessing mathematics: to provide evidence for teachers on
what students know and can do; to convey to students
what is important to know, do, and believe; to inform de-
cision makers within educational systems; and to moni-
tor performance of the educational system as a whole.
With respect to classroom assessment, we argue that,
constdered within the CLIA framework, the major pur-
pose is to use assessment for learning, which means that
it should provide useful information for students and
teachers to foster and optimize further learning (Shep-
ard, 2000; see also Shepard, 2001). Sloane and Kelly
(2003) contrast assessment for learning, or formative
assessment, with assessment of learning, the goal of
which is to determine what students can achieve and
whether they attain a certain achievement or proficiency
level. They describe this as high-stakes testing, a topic
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recently heavily debated in relation to the No Child Left
Behind Act of 2001 (see, e.g., the special issue of The-
ory inro Practice edited by Clarke & Gregory in 2003).
Before focusing on classroom assessment, we address
large-scale assessment, which mostly, but not necessar-
ily, takes the form of high-stakes testing.

Large-Scale Assessment of Mathematics Learning

The massive use of standardized tests in education has
always been more customary in the United States than in
Europe. The 2001 No Chiid Left Behind Act and the re-
lated quest for accountability have even increased this
practice, and also intensified the debates about the ef-
fectiveness and desirability of high-stakes testing (see,
e.g.. Amrein & Berliner, 2002; Clarke & Gregory, 2003).
Especially since the beginning of the 1990s, the tradi-
tional tests have been criticized (see, e.g., Kulm, 1990;
Lesh & Lamon, 1992; Madaus, West, Harmon. Lomax,
& Viator, 1992; Romberg, 1995; Shepard, 2001). But al-
though research has resulted in improvements in the un-
derlying theory and the technical aspects of achievement
assessment, R. Glaser and Silver (1994, p. 401) have ar-
gued, “Nevertheless, at present, much of this work is ex-
perimental, and the most common practices in the
current assessment of achievement in the national educa-
tional system have changed little in the last 50 years.”
Analyses of widely used standardized tests show that
there is a mismatch between the new vision of mathemat-
ical competence, as described earlier, and the content
covered by those tests. Due to the excessive use of the
multiple-choice format, the tests focus on the assess-
ment of memorized facts, rote knowledge, and lower-
level procedural skills. They do not sufficiently yield
relevant and useful information on students’” abilities in
problem solving, in modeling complex situations, in
communicating mathematical ideas, and in other higher-
order components of mathematical activity and a mathe-
matical disposition. A related criticism points to the
one-sided orientation of the tests toward the products of
students’ mathematics work. and the neglect of the
processes underlying those products (De Corte et al.,
1996; Masters & Mislevy. 1993; Silver & Kenney, 1995).
An important consequence of this state of the art is
that assessment often has a negative impact on the tm-
plemented curriculum, the classroom climate, and in-
structional practices. dubbed the WYTIWYG (What
You Test Is What You Get) principle ( Bell, Burkhardt, &
Swan, 1992). Indeed, the tests convey an implicit mes-

sage to students and teachers that only facts, standard
procedures. and lower-level skills are important and val-
ued in mathematics education. As a result, teachers tend
to “teach to the test”; that is, they adapt and narrow
their instruction to give a disproportionate amount ot at-
tention to the teaching of the low-level knowledge and
skills addressed by the test, at the expense of teaching
for understanding. reasoning., and problem solving
(Frederiksen. 1990; R. Glaser & Silver, 1994).

An additional major disadvantage of the majority of
traditional evaluation instruments is that they are dis-
connected from learning and teaching. Indeed, also due
to their static and product-oriented nature, most achieve-
ment measures do not provide feedback about students’
understanding of basic concepts, or about their thinking
and problem-solving processes. Hence, they fail to pro-
vide relevant information that is helpful for students and
teachers in terms of guiding further learning and in-
struction (De Corte et al., 1996: R. Glaser & Silver,
1994: NRC, 2001b; Shepard, 2001; Snow & Mandinach,
1991}). In this respect. Chudowsky and Pellegrino (2003,
p. 75) question whether large-scale assessments can be
developed that can both measure and support student
learning, and they argue:

We set ftorth the proposition that large-scale assessments
can and should do a much better job of supporting learn-
ing. But for that to happen. education leaders will need to
rethink some of the fundamental assumptions, values, and
betiefs that currently drive large-scale assessment prac-
tices in the United States. The knowledge base to support
change is available but has to be harnessed.

Indeed. apart from the previous intrinsic criticisms
of traditional standardized achievement tests, a major
issue of debate is their accountability use as high-stakes
tests, that is, their mandatory administration for coliect-
ing data on student achievement as a basis for highly
consequential decisions about students (e.g., gradua-
tion). teachers (e.g.. financial rewards), and schools and
school districts e.g., accreditation). According to the
No Child Left Behind Act. this accountability use
should result in the progressive acquisition by all stu-
dents of a proficiency level in reading and mathematics.
However. a crucial question is whether current testing
programs really foster and improve learning and instruc-
tion. and there are serious doubts in this regard. In a
study by Amrein and Berliner (2002) involving 13
states, it was shown that there is no compelling evidence
at all for increased student learning, the intended out-
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come of those states’ high-stakes testing programs.
Moreover, there are many reports of unintended unfa-
vorable consequences. such as increased dropout rates,
negative impact on minority and special education chil-
dren, cheating on examinations by teachers and stu-
dents. and teachers leaving the profession. In addition,
students tend to focus on learning for the test at the ex-
pense of the broader scope of the standards.

For large-scale assessments to indeed foster and im-
prove student learning. as set forth by Chudowsky and
Pellegrino (2003), we will have to move away from the
rationale, the constraints, and the practices of current
high-stakes testing programs (Amrein & Berliner, 2002;
NRC, 2001b). As one example, we briefly review an al-
ternative approach to large-scale testing developed re-
cently in the Flemish part of Belgium (for a more
detailed discussion. see Janssen, De Corte, Verschaffel,
Knoors. & Colémont, 2002).

In the preceding section of this chapter, we presented
a study by our center in which we designed a learning
environment for mathematical problem solving that is
aligned with the new standard for primary education in
Flanders that became operational in the school year
1998 to 1999. In a subsequent project. also commis-
sioned by the Department of Education of the Flemish
Ministry, we developed an instrument for the national
assessment of the new standards of the entire mathemat-
ics curriculum. The instrument was used to obtain a
first, large-scale baseline assessment of students’ attain-
ment of those curriculum standards at the end of pri-
mary school. The aim was thus not to evaluate individual
children or schools as a basis for making high-stakes de-
cisions, but to get an overall picture of the state of the
art of achievement in mathematics across Flanders. The
instrument consists of 24 measurement scales. each rep-
resenting a cluster of standards and covering as a whole
the entire mathematics curriculum relating to numbers,
measurement, and geometry.

Item response theory was used for the construction of
the scales. Using a stratified sampling design. a fairly
representative sample of 5,763 sixth graders (12-year-
olds) belonging to 184 schools participated in the inves-
tigation. Taking into account the aim of the assessment.
it was not necessary to have individual scores of all stu-
dents, and a population sampling approach could be used
“whereby different students take different portions of a
much larger assessment, and the results are combined to
obtain an aggregate picture of student achievement”
(Chudowsky & Pellegrino, 2003, p. 80). This approach

also allows for cover of the total breadth of the curricu-
lum standards. Specifically. the instrument involved 10
booklets, each containing about 40 items belonging to
two or three of the 24 measurement scales; to get book-
lets that were somewhat varied, the measurement scales
in each booklet represented distinct mathematical con-
tents (e.g.. the items in booklet 2 related to percentages
and problem solving). Each booklet was administered to
a sample of more than 500 sixth graders. Four different
item formats were used: short answer (67%). short an-
swer with several subquestions (14%), multiple choice
(11%), and product and process questions (8%). Espe-
cially the last type addressed higher-order skills by ask-
ing for a motivation or an explanation for the given
answer. Figure 4.1 shows an example of each of the four
item formats.

Estimating the proportion of students in three cate-
gories summarized performance on each of the 24 scales:
insufficient, sufficient. and good mastery. Briefly stated,
the results of this assessment were as follows. Scales
about declarative knowledge and those involving lower-
order mathematical procedures were mastered best. The
scales relating to more complex procedures (e.g., calcu-
lating percentages; calculating perimeter, area. volume).
and those that address higher-order thinking skills (prob-
lem solving: estimation and approximation) were not so
well mastered. The latter finding is not so surprising as
those scales relate to standards that are relatively new in
the Flemish mathematics curriculum. It is also interest-
ing to mention that few gender differences in perfor-
mance were observed.

It is the intention of the Department of Education of
the Flemish Ministry to organize such a large-scale as-
sessment of mathematics education periodically in the
future. As the present assessment was carried out re-
cently, it is too early to see if it has an impact on mathe-
matics learning and teaching. However. the potential is
obviously there. Indeed. because this assessment covers
the entire curriculum, its findings are a good starting
point for continued discussion and reflection on the
standards in and among all education stakeholders (pol-
icymakers, teachers, supervisors and educational coun-
selors. parents, students). Also due to the breadth of
such an assessment approach, it uncovers those (sets of )
standards that are insufficiently mastered. In doing so.
the assessment provides relevant feedback to practition-
ers (curriculum designers, teachers, counselors) by iden-
tifying those aspects of the curriculum that need special
attention in learning and instruction: researchers could



a. Short-answer format

Ann buys a coat of 4.500 BF for 1.600 BF.

With how many pereent is the price reduced?
%

b. Short-answer format with several subquestions

Put the following numbers in the table:

250 3564 816 2845 1991 1702

Note: Some numbers may not (it into the table, or may fit in several columns.

divisible through 2 |divisible through 3 |divisible through 5 |divisible through 9 | divisible through 10

¢. Multiple-choice format

Three of these pictures are made of the same situation.
One picture does not belong here.

Color the round below this picture.

o =] [« o

d. Product and process question
Chantal wants to buy a pair of Tiger sneakers and saw these ads in the local paper.

Family Shoe Center Van Dierens shoe shop
Bottom prices cvery day This week only
Tiger sneakers Sales: Tiger sncakers
only 1200 BF 1100 BF

The Family Shoe Center is within walking distance.

To go to Van Dicrens shoe shop Chantal has to take the bus. That would cost 80 BF
for a one-way ticket.

If Chantal wants to spend as little money as possible, at which shop should she buy her
sneakers?

Answer:

Explain why.

Answer:

Figure 4.1 Examples of an item for each item format.
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also focus intervention research of the kind discussed in
the previous section on those weaknesses in students’
competence. A third advantage of the alignment of the
assessment and the curriculum is that the often heard
complaint about teaching and learning to the test can
largely be avoided, especially if appropriate counseling
and follow-up care is provided after the results are pub-
lished. Moreover, because the Ministry does not intend
to use the results for the evaluation of individual teach-
ers or schools, and because scores of individual children,
classes, and schools are not published, the negative con-
sequences of high-stakes testing are also avoided.

Classroom Assessment

Notwithstanding the relevance and importance of large-
scale, external assessments, these necessarily need to be
supplemented by internal classroom testing. Large-scale
tests are a form of summative evaluation: They measure
achievement after a longer period of instruction cover-
ing a more or less extensive part of the curriculum of a
subject matter domain. It is obvious that assessment for
learning, that is, to assist and support learning in the
classroom, needs to be formative in nature: Teachers
need to continually collect evaluative information dur-
ing the instructional process about students’ progress in
understanding and mastering knowledge and skills as a
basis for guiding and supporting further learning, and, if
needed, for providing on-time corrective help and in-
struction for individual students or groups of students.
Such formative assessments also provide students them-
selves with informative feedback as a basis for monitor-
ing and regulating their own learning (see, e.g., NRC,
2001b; Shepard, 2001). Whereas external assessments
are useful and important for the large-scale monitoring
of trends in mathematics education, classroom assess-
ment intends to provide information on an ongoing day-
to-day basis to improve student learning, taking into
account the strengths and weaknesses of the class as a
group as well as of the individual students.

In view of fulfilling their expected role in supporting
and fostering learning, classroom assessment instru-
ments should be well aligned with the full breadth of the
lcarning goals or standards, similarly to large-scale
tests. And because classroom assessment is much more
focused on learning of and instruction for one specific
group of students (as a group but also as individual chil-
dren), it should provide, even more than large-scale
tests, diagnostic information about students’ conceptual
understanding and about their thinking processes and

solution strategies for tasks and problems. This is a con-
ditio sine qua non for teachers to guide further learning
and instruction, especially for adapting teaching appro-
priately to the needs of the learners (De Corte et al.,
1996; R. Glaser & Silver, 1994; Shepard, 2001).

A very simple example from our own research can il-
lustrate the importance of this diagnostic information.
In a study on children’s solution processes of numerical
addition and subtraction problems (De Corte &
Verschaffel, 1981), an item such as -12=7
elicited mainly the two wrong answers 18 and 5. Both
responses are incorrect, but the underlying erroneous
solution processes are totally different: The first wrong
answer is due to a rather technical error in executing the
arithmetic operation; the second mistake is conceptual
in nature and points to a lack of understanding of the
equal sign. By tracing children’s solution processes and
strategies, one can derive their level of understanding;
this information is necessary for designing individually
adapted remedial instruction.

Another striking example of the usefulness of identi-
fying students’ reasoning comes from the well-known
QUASAR (Quantitative Understanding: Amplifying
Student Achievement and Reasoning) project. The open-
ended task shown in Figure 4.2 was given to middle
school students (Silver & Kenney, 1995). The classroom
teachers believed that this was a straightforward task.
and expected the answer “No” accompanied by the fol-
lowing explanation: “Yvonne takes the bus eight times a
week, which would cost $8.00. Buying the pass would

The table bslow shows the cost for different bus fares

BUSY BUS COMPANY FARES

Ona Way $1.00
Waeekly Pass $8.00

Yvonng is trying to decide whether she should buy a weskiy bus pass.

On Mondasy, Wednasday, and Fridsy, she rides the bus o snd from work.

On Tuesday and Thuradey, she rides the bus to work but gets a ride homas with
her friends.

Should Yvonne buy 8 weekly bus pass?

Expisin your answaer:

Figure 4.2 Item from the QUASAR project. Source: From
“Sources of Assessment Information for Instructional Guid-
ance in Mathematics” (pp. 38-86), by E. A. Silver and P. A.
Kenney, in Reform in School Mathematics and Authentic As-
sessment, T. A. Romberg (Ed.), 1995, Albany, NY: State Uni-
versity of New York Press. Reprinted with permission.
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cost $1.00 more.” But surprisingly, quite a number of
students came up with the answer “Yes.” a response
that in a traditional product-oriented test would be
scored as incorrect. However. in their explanation,
those children argued that the pass was a better deal
because it could be used for other trips during the
weekend by Yvonne, and even by other family mem-
bers. This clearly illustrates that appropriately assess-
ing students’ knowledge and understanding requires
that one looks not only at their answers, but also at
their thinking and reasoning.

The preceding discussion shows that using assess-
ment to assist instruction requires that the two should be
integrated, as envisioned by the NRC (1989, p. 69; see
also NRC, 2001b; Shepard, 2001; Snow & Mandinach,
1991): “Assessment should be an integral part of teach-
ing. It is the mechanism whereby teachers can learn how
students think about mathematics as well as what stu-
dents are able to accomplish.” In accordance with this
perspective, Shavelson and Baxter (1992, p. 82) have
rightly argued that “a good assessment makes a good
teaching activity, and a good teaching activity makes a
good assessment.”

One can add that from the perspective of the learner,
a good assessment makes a good learning activity, and a
good learning activity makes a good assessment. Taking
into account the conception of learning in the CLIA
model, this also implies that assessment should contain
assignments that are meaningful for the learners and
that offer opportunities for self-regulated and collabora-
tive —besides individual —approaches to tasks and prob-
lems (see also Shavelson & Baxter, 1992). In line with
the constructivist view of learning, the increasing profi-
ciency in self-regulating their learning should gradually
lead to students acquiring the ability to self-assess their
math work. Of course, from that perspective, the crite-
ria and expectations should be made explicit to students
(see also Shepard, 2001).

To gather data about students’ performance and
progress, teachers can use a variety of techniques: in-
formal questions, seatwork and homework tasks, clini-
cal interviews, portfolios, and more formal instruments
such as teacher-made classroom tests, learning poten-
tial tests, and progress maps. The clinical interview
initiated by Piaget (1952) is a very appropriate tech-
nique for acquiring insight into children’s thinking and
reasoning processes while solving mathematics tasks
and problems. Due to its flexible, responsive, and open-
ended nature (Ginsburg, Klein. et al., 1998) it allows

for an in-depth analysis of those processes. For an ex-
cellent and practice-oriented introduction to the use of
the clinical interview as a tool for formative classroom
assessment, we refer readers to the teacher’s guide by
Ginsburg, Jacobs, and Lopez (1998).

Another method that aims at the diagnosis of mental
structures and cognitive processes is the so-called learn-
ing potential test, a concept that emerges from Vygot-
sky’s (1978) notion of the zone of proximal development
(ZPD). The purpose of a learning potential test is to di-
agnose the ZPD that provides an assessment of the
child’s learning ability (see, e.g.., A. L. Brown, Campi-
one, Webber, & McGilly, 1992; Hamers. Ruijssenaars,
& Sijtsma, 1992). Such a test consists of three steps: a
pretest, a learning phase, and a posttest. The pretest as-
sesses the child’s entering ability with respect to the tar-
geted problems. In the learning phase, which often takes
the format of an individual interview, the tester admin-
isters a carefully designed sequence of tasks represent-
ing a continuum of increasing difficulty/transfer levels;
the amount of help needed by the child for solving the
successive tasks is taken as a measure of learning effi-
ciency. Finally, a posttest is given to measure the
amount of learning that has occurred throughout the ses-
sion. This learning potential test thus offers a nice ex-
ample of the integration of instruction and assessment.

One type of instrument that is particularly useful for
classroom assessment from a developmental perspec-
tive, especially if it is theory-based, is a progress map,
which describes the typical sequence of development
and acquisition of knowledge and skill in a given do-
main of learning. As an example, we present the Number
Knowledge Test developed by Griffin and Case (1997;
see also NRC, 2001b). The test was originally elabo-
rated as an instrument for testing the authors’ theory
concerning the normal development in children of cen-
tral conceptual structures for whole numbers. In this re-
gard, they distinguish four stages:

1. Initial counting and quantity schemas: Four-year-olds
can count a set of objects and have some knowledge of
quantity, allowing them to answer questions about
more and less when presented with arrays of objects.
But they fail on such questions as *Which is more—
four or five?”

2. Mental counting line structure: By 6 years, children
are able to answer correctly the latter type of ques-
tion (without objects), indicating that the two earlier
structures are integrated into a mental number line,
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considered by Griffin and Case as a central concep-
tual structure.

3. Double counting line structure: By 8§ years, once
children understand how mental counting works,
they progressively form representations of multiple
number lines. such as those for counting by 2s, 5s,
10s, and 100s.

4. Understanding of full system : By about age 10, children
acquire a generalized understanding of the whole-
number system and the underlying base-10 system.

Although primarily intended as a research instrument,
the Number Knowledge Test has been applied in North
America more and more as a diagnostic assessment tool
to inform and assist arithmetic teaching. The test has al-
ready been revised to better capture 4-year-olds’ under-
standing of number. The revised version is presented in
Figure 4.3 (Griffin, 2003, 2004).

This Number Knowledge Test is administered orally
and individually to children. The testing continues until
a child does not answer a sufficient number of questions
to proceed to the next level. It has been shown that the
test yields very rich data about children’s development
in understanding numbers, and the instrument derives
its power as an assessment tool from the underlying the-
ory briefly outlined earlier. Although teachers often
have an initial resistance to administering this individ-
ual oral test, most end up finding it very useful and
worthwhile. They report that the test reveals differences
in thinking among children that they were not aware of
before. As a consequence, they also listen more actively
to their students, and they find the results very useful
for supporting and fostering children’s learning.

Summary

Theoretical and empirical work over the past 15 years
has resulted in important changes in the roles for assess-
ment that are in line with a constructivist perspective on
learning. The NRC (2001b, p. 4) has summarized these
roles appropriately as follows:

Assessments, especially those conducted in the context of
classroom instruction, should focus on making students’
thinking visible to both teachers and themselves so that in-
structional strategies can be selected to support an appro-
priate course for future learning....One of the most
important roles for assessment is the provision of timely
and informative feedback to students during instruction

and learning so that their practice of a skill and its subse-
quent acquisition will be effective and efficient.

Researchers in the field of learning and instruction,
as well as experts in the domain of testing and psycho-
metrics, have started endeavors, aiming at the elabora-
tion of new approaches and procedures for the design
and construction of innovative assessment devices in
line with those novel roles. as well as an explicit and
research-based integration of assessment and instruction
(Frederiksen, Mislevy, & Bejar, 1993; Lesh & Lamon,.
1992; NRC. 2001b; Romberg, 1995; Shepard, 2001).

However, only the first steps have been taken, and so
we are confronted with an extensive and long-term
agenda of research and dissemination (see. e.g., Snow &
Mandinach, 1991). Implementation of the new perspec-
tive on assessment requires first of all breaking out of
the still prevailing traditional approach to evaluation in
educational practice. Policymakers, practitioners, and
the public need to be convinced of the nonproductivity
of, and even the harm from, the educational perspective
of current high-stakes testing and of the benefits of the
assessment for learning. This is critical because large-
scale assessments in the usual standardized testing sce-
narios radiate on and influence classroom assessment.
As argued by Amrein and Berliner (2002), it is now time
to debate high-stakes testing policies more thoroughly
and seek to change them if they do not do what was
intended and have some unintended negative conse-
quences as well.

A major challenge for research in the future relates to
the integration of psychometric theory with current per-
spectives about the nature of productive learning and ef-
fective teaching. In this regard, some progress has
recently been made, as illustrated by the report of the
NRC (2001b), Knowing What Students Know: The Sci-
ence and Design of Educational Assessment. But much
remains to be done to develop alternative methods for
the construction of new types of assessment instru-
ments. Another important issue for research is the devel-
opment of computer-based systems for assessment.
Indeed, due to its wide possibilities for varied presenta-
tion of tasks and problems, its potential for adaptive
testing and feedback taking into account learners’ prior
knowledge and skills, and its capacities for storing and
processing responses, the computer can be very helpful
in achieving the challenging task of elaborating and im-
plementing the intended forms of assessment to assist
and support learning and instruction.



Number Knowledge Test

Level 0 (4-year-old level): Go to Level 1 if 3 or more correct.

I Can you count these chips and teil me how many there are? (Place 3 counting chips in front of child in a row.)

2a (Show stacks of chips, 5 vs. 2, same color.) Which pile has more?

2b (Show stacks of chips, 3 vs. 7, same color.) Which pile has more?

3a this time I’'m going to ask you which pile has less. {Show stacks of chips, 2 vs. 6, same color.) Which pile has less?
3b (Show stacks of chips. 8 vs. 3, same color.) Which pile has less?

4 I’m going to show you some counting chips. (Show a line of 3 red and 4 yellow chips in a row, as tollows: R Y R Y RY Y.) Count just the
yellow chips and tell me how many there are.

5 Pick up all chips from the previous question. Then say: Here are some more counting chips. (Show mixed array [not in a row] of 7 yellow
and 8 red chips.) Count just the red chips and tell me how many there are.

Level 1 (6-year-old level): Go to Level 2 if 5 or more correct.

If you had 4 chocolates and someone gave you 3 more, how many chocolates would you have altogether?
What number comes right after 77

Lo =

What number comes two numbers after 7?

4a Which is bigger: 5 or 4?7

4b Which is bigger: 7 or 97

Sa This time, I'm going to ask you about smaller numbers. Which is smaller: 8 or 67
5b Which is smaller: 5 or 77

6a Which number is closer to 5: 6 or 27 (Show visual array after asking question.)
6b Which number is closer to 7: 4 or 9?7 Show visual array after asking question.)

7 How much is 2 + 47 (OK to use fingers for counting.)

8 How much is § take away 67 (OK to use fingers for counting.)

9a (Show visual array - 8 5 2 6 - and ask child to point to and name each numeral.) When you are counting, which of these numbers do you
say first?

9b When you are counting, which of these numbers do you say last?

Level 2 (8-year-old level): Go to Level 3 if 5 or more correct.

What number comes 5 numbers after 49?7
2 What number comes 4 numbers before 607
3a Which is bigger: 69 or 717
3b Which is bigger: 32 or 287
4a This time I'm going to ask you about smaller numbers. Which is smaller: 27 or 327
4b Which is smaller: 51 or 397
5a Which number is closer to 21: 25 or 187 (Show visual array after asking the question.)
5b Which number is closer to 28: 31 or 24? (Show visual array after asking the question.)
6 How many numbers are there in between 2 and 6? (Accept either 3 or 4.)
7 How many numbers are there in between 7 and 9?7 (Accept either 1 or 2.)
8 (Show card 12 54) How much is 12 - 547
9  (Show card 47 21) How much is 47 take away 217

Level 3 (10-year-old level):

1 What number comes 10 numbers after 99?

2 What number comes 9 numbers after 9997

3a Which difference is bigger: the difference between 9 and 6 or the difference between 8 and 37

3b Which difference is bigger: the difference between 6 and 2 or the difference between 8 and 5?

4a Which difference is smaller: the difference between 99 and 92 or the difference between 25 and 117
4b Which difference is smaller: the difference between 48 and 36 or the difference between 84 and 737
(Show card, “13, 39”) How much is 13 + 397

(Show card, 36, 187} How much is 36 - 18?7

How much is 301 take away 7

R e

Figure 4.3 Number Knowledge Test. Source: From “The Development of Math Competence in the Preschool and Early
School Years: Cognitive Foundations and Instructional Strategies” (pp. 1-32). by S. Gritfin, in Mathematical Cognition, J. M.
Royer (Ed.), 2003, Greenwich, CT: Information Age Publishing. Reprinted with permission.
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¢ ONCLUSIONS

t«ing the CLIA framework as an organizing device, this
chapter presents a selective review of research on devel-
vpment, learning, and instruction relating to mathemat-
t.» that is relevant and looks promising in view of
application in and innovation and improvement of math-
ematics classroom practices. This framework is in line
with the new international perspectives on the goals and
the nature of mathematics education as manifested in
tetorm documents such as the Principles and Standards
tor School Mathematics (NCTM, 2000). The review is
sclective in terms of educational level (focusing on pri-
mary school) and mathematical content (whole number
und word problem solving); in addition, the chapter has
an emphasis on research on mathematics education in
the Western world.

The review shows that with respect to each of the four
witerconnected components of the CLIA model, our em-
pirically based knowledge has substantially advanced
over the past decades. Progressively. a much better un-
derstanding has emerged concerning the components
that constitute a mathematical disposition, concerning
the nature of the learning and developmental processes
thut should be induced in students to facilitate the acqui-
sition of competence, concerning the characteristics of
teurning environments that are powerful in initiating and
cvoking those processes, and concerning the kind of as-
sessment instruments that are appropriate to help moni-
tor and support learning and teaching.

An important question to ask is whether this expand-
mg  knowledge base (for a condensed review, see
Grouws & Cebulla, 2000) is relevant and useful to
bridging the long-standing gap between theory/research
and practice and, thus, can contribute to improving
mathematics education practices. The available inter-
vention studies reviewed and referred to here, as well as
others (e.g., Becker & Selter, 1996; Clements &
Sarama, 2004; Lesh & Doerr, 2003), warrant some opti-
miism. Indeed, the increasing number of success stories
are building to a critical mass of results, showing that
under certain conditions, carefully designed. research-
basced learning environments can yield learning out-
comes in students that are in accordance with the
current view of the goal of mathematics education as
the acquisition of a mathematical disposition. Based on
the research analyzed and reviewed here, but also taking
mto account the broader recent literature on innovative
contexts for learning in and out of school (e.g., NRC,
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2000; Schauble & Glaser, 1996), some major intercon-
nected principles for designing powerful mathematics
learning environments are the following:

* Learner-centered environments, that is, environments
that help all students construct knowledge and skills.
building on their prior knowledge and beliefs relating
to mathematics.

* A focus on understanding of basic concepts and num-
ber sense and, where relevant, connecting conceptual
with procedural knowledge.

* Learning new mathematical concepts and skills
while problem solving.

» Stimulating active and progressively more self-
regulated, reflective learning, starting from eliciting
children’s own productions and contributions.

» Use of tasks and problems that are meaningful to stu-
dents, and when they have acquired a certain level of
mastery, inviting them to generate their own tasks
and problems.

* Use of interactive and collaborative teaching meth-
ods, especially small-group work and whole-class
discussion to create a classroom learning community.

* Alignment of learning, instruction, and assessment to
provide multiple opportunities for feedback that yield
relevant information for improving teachers’ instruc-
tion as well as students’ learning.

* Attention to individual differences by assessing, ac-
knowledging, and supporting diversity.

The optimism based on the available research is fu-
eled by the observation that inquiry-based ideas are in-
deed gradually taking root in
education community, namely, in the reform docu-
ments worldwide and subsequently in curricula and
textbooks, but also in the writings and practices of
knowledgeable educational professionals. However, the
optimism is tempered by two major challenging prob-
lems for future research and development that we can-
not elaborate here due to space restrictions. The first
issue, signaled in the section on intervention, relates to
broadly upscaling the new perspective on learning and
teaching mathematics, and the design principles for
learning environments that derive from it. The second
related and equally important problem concerns the
sustainability of innovative learning environments. The
solution to both problems has a serious price tag and is
largely a matter for educational policy. Taking this into

the mathematics
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account. a major answer lies in preservice and in-
service teacher professional development: an excellent
example in this respect is the Cognitively Guided In-
struction Project (Carpenter & Fennema, 1992; Car-
penter. Fennema, & Franke, 1994, for a brief overview,
see Ginsburg, Klein, et al., 1998). In terms of sustain-
ability. a major condition is meeting teachers’ need for
ongoing support for feedback and retlection about their
teaching practices (Cognition and Technology Group at
Vanderbilt, 1997). A promising approach to such con-
tinuing professional development and support is elabo-
rated in the Lesson Study Project, the core form of
in-service training for Japanese mathematics teachers
(Lewis, 2002).
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